Skip to main content

Advertisement

Log in

Biodegradable Stone Paper as a Sustainable Alternative to Traditional Paper: A Review

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Stone paper is a relatively sustainable alternative to traditional fibre-based paper. Stone paper is made using resin such as high-density polyethylene (HDPE) and a mineral such calcium carbonate (CaCO3). Plasticizers, bulking agents, coupling reagents, dispersing agents, and inorganic fillers are added in the stone paper formulation for imparting different properties. However, the HDPE, used in stone paper formulation, is not biodegradable and can be replaced with biodegradable polymers to make stone paper more environment friendly. The biodegradable stone paper can be easily made using relatively cheaper blown film process. The stone paper can also be made from CaCO3 waste of traditional paper industry and recycled polymer waste. This review paper provides overview about the stone paper, the biodegradable polymeric materials which can be used instead of HDPE, information about the converting processes for stone paper; it’s applications and comparison to the traditional paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.A.M. Counsell, J.M. Allwood, “Desktop paper recycling: A survey of novel technologies that might recycle office paper within the office,” J Mater Process Technol, vol. 173, no. 1, pp. 111–123, Mar. 2006, doi: https://doi.org/10.1016/j.jmatprotec.2005.11.017

  2. J. Hoshi, S. Amano, Y. Sasaki, T. Korenaga, “Investigation and estimation of emission sources of 54 volatile organic compounds in ambient air in Tokyo,” Atmos Environ, vol. 42, no. 10, pp. 2383–2393, Mar. 2008, doi: https://doi.org/10.1016/j.atmosenv.2007.12.024

  3. R. Malhotra, D. Prakash, S.K. Shukla, T. Kim, S. Kumar, N.J. Rao, “Comparative study of toxic chlorophenolic compounds generated in various bleaching sequences of wheat straw pulp,” Clean Technol Environ Policy, vol. 15, no. 6, pp. 999–1011, Dec. 2013, doi: https://doi.org/10.1007/s10098-013-0578-6

  4. D.A. Sonnenfeld, “Developing countries,” Env Polit, vol. 9, no. 1, pp. 235–256, Mar. 2000, doi: https://doi.org/10.1080/09644010008414518

  5. P.E. Rosenfeld, L.G.H. Feng, “The Paper and Pulp Industry,” in Risks of Hazardous Wastes, Elsevier, 2011, pp. 103–113. doi:https://doi.org/10.1016/b978-1-4377-7842-7.00009-x

  6. A. Hibiki, S. Managi, “Environmental Information Provision, Market Valuation, and firm incentives: an empirical study of the japanese PRTR System”. Land. Econ. 86(2), 382–393 (May 2010). doi:https://doi.org/10.3368/le.86.2.382

    Article  Google Scholar 

  7. M. Ezcurra, “Terraskin® the paper made from stone: a study of a new writing support for forensic purposes”. Forensic Sci. Int. 220, no. 1–3 (Jul. 2012). doi:https://doi.org/10.1016/j.forsciint.2012.02.018. pp. 164–172

    Article  CAS  Google Scholar 

  8. L. Indriati, M.A. Nugraha, Y.S. Perng, “Stone paper, an eco-friendly and free-tree papers,” 2020, p. 030010. doi: https://doi.org/10.1063/5.0001753

  9. E. Chizhova, I. Ursu, M. Shchenyatskaya, S. Chizhov, “Selection of a supplier of building materials for the construction of transport infrastructure Facilities,” 2023, pp. 487–495. doi: https://doi.org/10.1007/978-3-031-11058-0_48

  10. L. Indriati, M.A. Nugraha, Y.S. Perng, “Stone paper, an eco-friendly and free-tree papers,” in AIP Conference Proceedings, Jun. 2020, vol. 2243. doi: https://doi.org/10.1063/5.0001753

  11. C. Affeldt, A. Leung, K. Yang, M. Xu, “Life Cycle Assessment of Stone Paper, Polypropylene Film, and Coated Paper for Use as Product Labels,” 2016

  12. J.E. Post, B.W. Altma, “Managing the Environmental Change Process: Barriers and Opportunities,” Journal of Organizational Change Management, vol. 7, no. 4, pp. 64–81, Aug. 1994, doi: https://doi.org/10.1108/09534819410061388

  13. M.A.S. Patwary, S.M. Surid, M.A. Gafur, “Properties and Applications of Biodegradable Polymers”. J. Res. Updates Polym. Sci. 9, 32–41 (May 2020). doi:https://doi.org/10.6000/1929-5995.2020.09.03

    Article  Google Scholar 

  14. J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies, “Biodegradable and compostable alternatives to conventional plastics,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 364, no. 1526, pp. 2127–2139, Jul. 2009, doi: https://doi.org/10.1098/rstb.2008.0289

  15. K. Krasowska, A. Heimowska, “Degradability of Polylactide in Natural Aqueous environments”. Water (Basel) 15(1), 198 (Jan. 2023). doi:https://doi.org/10.3390/w15010198

    Article  CAS  Google Scholar 

  16. W.L. Hawkins, “Polymer Degradation,” 1984, pp. 3–34. doi: https://doi.org/10.1007/978-3-642-69376-2_2

  17. Olaiya et al., “Properties and Characterization of a PLA–Chitin–Starch Biodegradable Polymer Composite,” Polymers (Basel), vol. 11, no. 10, p. 1656, Oct. 2019, doi: https://doi.org/10.3390/polym11101656

  18. M. Dohendou, K. Pakzad, Z. Nezafat, M. Nasrollahzadeh, M.G. Dekamin, “Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review,” Int J Biol Macromol, vol. 192, pp. 771–819, Dec. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.09.162

  19. P. Rai, S. Mehrotra, S. Priya, E. Gnansounou, S.K. Sharma, “Recent advances in the sustainable design and applications of biodegradable polymers”. Bioresour Technol. 325, 124739 (Apr. 2021). doi:https://doi.org/10.1016/J.BIORTECH.2021.124739

    Article  CAS  PubMed  Google Scholar 

  20. P. Feijoo, A.K. Mohanty, A. Rodriguez-Uribe, J. Gámez-Pérez, L. Cabedo, M. Misra, “Biodegradable blends from bacterial biopolyester PHBV and bio-based PBSA: Study of the effect of chain extender on the thermal, mechanical and morphological properties,” Int J Biol Macromol, vol. 225, pp. 1291–1305, Jan. 2023, doi: https://doi.org/10.1016/j.ijbiomac.2022.11.188

  21. L. Botta et al., “Biocomposite PBAT/lignin blown films with enhanced photo-stability”. Int. J. Biol. Macromol. 217, 161–170 (Sep. 2022). doi:https://doi.org/10.1016/j.ijbiomac.2022.07.048

    Article  CAS  PubMed  Google Scholar 

  22. P.A. Tarantili, “Reinforced Elastomers: Interphase Modification and Compatibilization in Rubber-Based nanocomposites,” 2013, pp. 109–154. doi: https://doi.org/10.1007/978-3-642-20928-4_4

  23. I. Varyan, P. Tyubaeva, N. Kolesnikova, A. Popov, “Biodegradable Polymer Materials Based on Polyethylene and Natural Rubber: Acquiring, Investigation, Properties,” Polymers (Basel), vol. 14, no. 12, Jun. 2022, doi: https://doi.org/10.3390/polym14122457

  24. R. Khare, S. Khare, “Polymer and its effect on environment”. J. Indian Chem. Soc 100(1), 100821 (Jan. 2023). doi:https://doi.org/10.1016/J.JICS.2022.100821

    Article  CAS  Google Scholar 

  25. B.C. Daglen, D.R. Tyler, “Photodegradable plastics: end-of-life design principles”, Green Chem. Lett. Rev, 3, no. 2. 69–82, 2010. doi:https://doi.org/10.1080/17518250903506723

    Article  CAS  Google Scholar 

  26. S. Rajendran et al., “Programmed photodegradation of Polymeric/Oligomeric materials derived from renewable bioresources”. Angew. Chem 127(4), 1175–1179 (Jan. 2015). doi:https://doi.org/10.1002/ange.201408492

    Article  Google Scholar 

  27. A. Alhanish, M. Abu Ghalia, “Developments of biobased plasticizers for compostable polymers in the green packaging applications: a review”, Biotechnol. Prog, 37, 6, Nov. 2021, doi:https://doi.org/10.1002/btpr.3210

  28. T. Tay, D.A.V. Morton, T.R. Gengenbach, P.J. Stewart, “Dissolution of a poorly water-soluble drug dry coated with magnesium and sodium stearate”. Eur. J. Pharm. Biopharm 80(2), 443–452 (Feb. 2012). doi:https://doi.org/10.1016/j.ejpb.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  29. E.P. Plueddemann, “Adhesion Through Silane Coupling Agents,” J Adhes, vol. 2, no. 3, pp. 184–201, Jul. 1970, doi: https://doi.org/10.1080/0021846708544592

  30. M.-L. Zhang, X.-H. Zhao, “In Vitro calcium-chelating and platelet anti-aggregation activities of soy protein hydrolysate modified by the alcalase-catalyzed plastein reaction”. J. Food Biochem. 38(3), 374–380 (Jun. 2014). doi:https://doi.org/10.1111/jfbc.12063

    Article  CAS  Google Scholar 

  31. C. Varodi et al., “Stone Paper as a New Substrate to Fabricate Flexible Screen-Printed Electrodes for the Electrochemical Detection of Dopamine,” Sensors, vol. 20, no. 12, p. 3609, Jun. 2020, doi: https://doi.org/10.3390/s20123609

  32. A.R. Ranjbartoreh, B. Wang, X. Shen, G. Wang, “Advanced mechanical properties of graphene paper”. J. Appl. Phys. 109(1), 014306 (Jan. 2011). doi:https://doi.org/10.1063/1.3528213

    Article  CAS  Google Scholar 

  33. C. Hall, W.D. Hoff, Water Transport in Brick, Stone and Concrete (CRC Press, London, 2021), doi:https://doi.org/10.1201/9780429352744

    Book  Google Scholar 

  34. G. Li et al., “CO2 and air pollutant emissions from bio-coal briquettes”. Environ. Technol. Innov. 29, 102975 (Feb. 2023). doi:https://doi.org/10.1016/j.eti.2022.102975

    Article  CAS  Google Scholar 

  35. R.A. Nuaimi, R.L. Thankamony, X. Liu, L. Cao, Z. Zhou, Z. Lai, “Ultrafiltration membranes prepared via mixed solvent phase separation with enhanced performance for produced water treatment,” J Memb Sci, vol. 670, p. 121375, Mar. 2023, doi: https://doi.org/10.1016/j.memsci.2023.121375

  36. R. Venkatesan, K. Alagumalai, C.J. Raorane, V. Raj, D. Shastri, S.-C. Kim, “Morphological, Mechanical, and Antimicrobial Properties of PBAT/Poly(methyl methacrylate-co-maleic anhydride)–SiO2 Composite Films for Food Packaging Applications,” Polymers (Basel), vol. 15, no. 1, p. 101, Dec. 2022, doi: https://doi.org/10.3390/polym15010101

  37. K. Longkaew, W. Tessanan, P. Daniel, P. Phinyocheep, A. Gibaud, “Using sucrose to prepare submicrometric CaCO3 vaterite particles stable in natural rubber”. Adv. Powder Technol 34(1), 103924 (Jan. 2023). doi:https://doi.org/10.1016/j.apt.2022.103924

    Article  CAS  Google Scholar 

  38. M.R. Caruso, G. Cavallaro, G. Lazzara, S. Milioto, “Pectin/microwax composites for surface coating and protection”. Mater. Lett. 333, 133567 (Feb. 2023). doi:https://doi.org/10.1016/j.matlet.2022.133567

    Article  CAS  Google Scholar 

  39. L.F. Wang, J.W. Rhim, S.I. Hong, “Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application”. LWT 68, 454–461 (May 2016). doi:https://doi.org/10.1016/j.lwt.2015.12.062

    Article  CAS  Google Scholar 

  40. P. Takkalkar et al., “Structural, thermal, rheological and optical properties of poly(lactic acid) films prepared through solvent casting and melt processing techniques,” J Taiwan Inst Chem Eng, vol. 104, pp. 293–300, Nov. 2019, doi: https://doi.org/10.1016/j.jtice.2019.08.018

  41. S. Sharma, M. Byrne, K.Y. Perera, B. Duffy, A.K. Jaiswal, S. Jaiswal, “Active film packaging based on bio-nanocomposite TiO2 and cinnamon essential oil for enhanced preservation of cheese quality,” Food Chem, vol. 405, p. 134798, Mar. 2023, doi: https://doi.org/10.1016/j.foodchem.2022.134798

  42. J.R. Wagner, “Blown Film, C. Film, L. Processes, ” in Multilayer Flexible Packaging: Second Edition (Elsevier Inc., 2016), pp. 137–145, doi:https://doi.org/10.1016/B978-0-323-37100-1.00010-7

  43. S.A. Ashter, “Processing Biodegradable Polymers,” Introduction to Bioplastics Engineering, pp. 179–209, Jan. 2016, doi: https://doi.org/10.1016/B978-0-323-39396-6.00007-5

  44. S.E.M. Selke, J.D. Culter, R.A. Auras, M. Rabnawaz, “Extrusion, Film and Sheet,” Plastics Packaging, pp. 219–251, Jan. 2021, doi: https://doi.org/10.3139/9781569908235.007

  45. N. Tuancharoensri et al., “In situ compatibilized blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: investigation of miscibility, morphology, crystallinity and modelling”. Polym. (Basel) 15(2), 303 (Jan. 2023). doi:https://doi.org/10.3390/polym15020303

    Article  CAS  Google Scholar 

  46. D. Rokade, P. Patil, S. Nandimath, H. Pol, “A rheology and processing study on controlling material and process defects in polymer melt extrusion film casting using polymer blends”, J. Plast. Film Sheeting, 875608792211507, Jan. 2023, doi:https://doi.org/10.1177/87560879221150764

  47. J.O.D. Malafatti, T.M. de Oliveira Ruellas, C.R. Sciena, E.C. Paris, “PLA/starch biodegradable fibers obtained by the electrospinning method for micronutrient mineral release”. AIMS Mater. Sci. 10(2), 200–212 (2023). doi:https://doi.org/10.3934/matersci.2023011

    Article  CAS  Google Scholar 

  48. C.-C. Chen, J.-Y. Chueh, H. Tseng, H.-M. Huang, S.-Y. Lee, “Preparation and characterization of biodegradable PLA polymeric blends,” Biomaterials, vol. 24, no. 7, pp. 1167–1173, Mar. 2003, doi: https://doi.org/10.1016/S0142-9612(02)00466-0

  49. M. Singhvi, D. Gokhale, “Biomass to biodegradable polymer (PLA)”. RSC Adv. 3, 33, p. 13558 (2013). doi:https://doi.org/10.1039/c3ra41592a. no.

    Article  CAS  Google Scholar 

  50. M. Pandya, R. Dhadwal, J.K. Valadi, “Support Vector Machines and Random Forest classification models for identification of Stability in Extrusion Film casting process,” 2023, pp. 187–195. doi: https://doi.org/10.1007/978-981-19-2600-6_13

  51. J.R. Wagner, “Blown film, cast film and lamination processes,” in Multilayer Flexible Packaging: Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries, Elsevier, 2009, pp. 107–112. doi:https://doi.org/10.1016/B978-0-8155-2021-4.10009-7

  52. A. Perez, E. Kynaston, C. Lindsay, N. Ballard, “Measuring and understanding blocking resistance in films cast from polymer latexes”. Prog Org. Coat. 174, 107246 (Jan. 2023). doi:https://doi.org/10.1016/j.porgcoat.2022.107246

    Article  CAS  Google Scholar 

  53. A. Genovese, B. Ponte, S. Cannella, R. Dominguez, “Empowering the transition towards a Circular Economy through Empirically-Driven Research: past, Present, and future [Editorial of the International Journal of Production Economics’ special issue ‘ empowering the transition towards a Circular Economy: Empirically-Driven Research in Closed-Loop Supply Chains ’]”, Int. J. Prod. Econ., 108765, Jan. 2023, doi:https://doi.org/10.1016/j.ijpe.2022.108765

Download references

Funding

No funding was provided for this review paper.

Author information

Authors and Affiliations

Authors

Contributions

Nupur Swain and Pragti Saini have done the literature survey, written the manuscript and prepared figures and tables. Prof. Sampat Singh Bhati and Prof. Vibhore Rastogi have guided them for the work.

Corresponding author

Correspondence to Sampat Singh Bhati.

Ethics declarations

Conflict of Interest

None of the authors have received any financial support for this manuscript and therefore do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, N., Saini, P., Bhati, S.S. et al. Biodegradable Stone Paper as a Sustainable Alternative to Traditional Paper: A Review. J Inorg Organomet Polym 33, 2240–2251 (2023). https://doi.org/10.1007/s10904-023-02644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02644-6

Keywords

Navigation