Skip to main content
Log in

Self-Supporting β-Ga2O3 Reinforced PMMA Composite Films with Multifunctional Traits

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Metal oxides combined with polymers form an important class of inorganic–organic composite material which could offer versatile functionalities. This work deals with the hydrothermal synthesis of cocoon shaped β-Ga2O3 structures and incorporation of these structures into PMMA matrix to form flexible composite films with multifunctional traits. Self-supporting β-Ga2O3/PMMA films of different compositions were fabricated through solvent casting method by varying the weight percentage of β-Ga2O3 (0, 1, 2, 3 and 4%) in the PMMA matrix. The pure structures and composites were analyzed systematically using various characterization tools, and the results confirmed the successful integration of β-Ga2O3 in the PMMA matrix. Thermogravimetry and differential scanning calorimetry studies revealed the significant changes in the thermal behaviour of the polymer on account of the presence of β-Ga2O3 particles. The composite films were semi-transparent with high UV-C absorbance property and on irradiation with UV light it found to exhibit blue luminescence. The wettability and self-cleaning behaviour of the fabricated films were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016)

    CAS  Google Scholar 

  2. M.H. Wong, K. Goto, H. Murakami, Y. Kumagai, M. Higashiwaki, IEEE Electron Device Lett. 40, 431 (2019). https://doi.org/10.1109/LED.2018.2884542

    Article  CAS  Google Scholar 

  3. K.Y. Chen, C.C. Hsu, H.C. Yu, Y.M. Peng, C.C. Yang, Y.K. Su, IEEE Trans. Electron Devices 65, 1817 (2018). https://doi.org/10.1109/TED.2018.281763

    Article  CAS  Google Scholar 

  4. A.S. Pratiyush, S. Krishnamoorthy, R. Muralidharan, S. Rajan, D.N. Nath, Advances in Ga2O3 solar-blind UV photodetectors, in Gallium oxide. (Elsevier, Amsterdam, 2018)

    Google Scholar 

  5. S.J. Pearton, F. Ren, M. Tadjer, J. Kim, J. Appl. Phys. 124, 220901 (2018). https://doi.org/10.1063/1.5062841

    Article  CAS  Google Scholar 

  6. N. Watanabe, K. Ide, J. Kim, T. Katase, H. Hiramatsu, H. Hosono, T. Kamiya, Phys. Status Solidi Appl. Mater. Sci. 216, 1 (2019). https://doi.org/10.1002/pssa.201700833

    Article  CAS  Google Scholar 

  7. A.M. Hassanien, A.A. Atta, M.M. El-Nahass, S.I. Ahmed, A.A. Shaltout, A.M. Al-Baradi, A. Alodhayb, A.M. Kamal, Opt. Quantum Electron. (2020). https://doi.org/10.1007/s11082-020-02306-8

    Article  Google Scholar 

  8. A.K. Saikumar, S.D. Nehate, K.B. Sundaram, ECS J. Solid State Sci. Technol. 8, Q3064 (2019). https://doi.org/10.1149/2.0141907jss

    Article  CAS  Google Scholar 

  9. H. Yamahara, M. Seki, H. Tabata, J. Cryst. Process Technol. 02, 125 (2012). https://doi.org/10.4236/jcpt.2012.24017

    Article  CAS  Google Scholar 

  10. S. Li, C. Yang, J. Zhang, L. Dong, C. Cai, H. Liang, W. Liu, Nanomaterials 10, 1 (2020). https://doi.org/10.3390/nano10091760

    Article  CAS  Google Scholar 

  11. M. Ristić, S. Popović, S. Musić, Mater. Lett. 59, 1227 (2005). https://doi.org/10.1016/j.matlet.2004.11.055

    Article  CAS  Google Scholar 

  12. R. Pilliadugula, N.G. Krishnan, Mater. Sci. Semicond. Process. 112, 105007 (2020). https://doi.org/10.1016/j.mssp.2020.105007

    Article  CAS  Google Scholar 

  13. H.J. Bae, T.H. Yoo, Y. Yoon, I.G. Lee, J.P. Kim, B.J. Cho, W.S. Hwang, Nanomaterials 8, 1 (2018). https://doi.org/10.3390/nano8080594

    Article  CAS  Google Scholar 

  14. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, A.M. El-Naggar, J. Inorg. Organomet. Polym. Mater. 30, 1898 (2020). https://doi.org/10.1007/s10904-019-01320-y

    Article  CAS  Google Scholar 

  15. U. Ali, K.J.B.A. Karim, N.A. Buang, Polym. Rev. 55, 678 (2015). https://doi.org/10.1080/15583724.2015.1031377

    Article  CAS  Google Scholar 

  16. S.H. Soytaş, O. Oğuz, Y.Z. Menceloğlu, Polym Nanocomposites Decor Metal Oxides (2018). https://doi.org/10.1016/B978-0-12-814064-2.00009-3

    Article  Google Scholar 

  17. A.N. Mohammed Ali, N.A. Ali, S.I. Hussein, A. Hakamy, B. Raffah, A.S. Alofi, A.M. Abd-elnaiem, J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-022-02525-4

    Article  Google Scholar 

  18. Ü.A.M.E. Tascıoğlu, O.G.M. Aslan, A.Y.H. Kaya, C.D.H. Çuvalcı, J. Inorg. Organomet. Polym. Mater. 29, 1514 (2019). https://doi.org/10.1007/s10904-019-01115-1

    Article  CAS  Google Scholar 

  19. A. Singhal, K.A. Dubey, Y.K. Bhardwaj, D. Jain, S. Choudhury, A.K. Tyagi, RSC Adv. 3, 20913 (2013). https://doi.org/10.1039/c3ra42244e

    Article  CAS  Google Scholar 

  20. T. Otsuka, Y. Chujo, Polym. J. 42, 58 (2010). https://doi.org/10.1038/pj.2009.309

    Article  CAS  Google Scholar 

  21. Alver, M.E. Tascıoğlu, O. Güler, M. Aslan, A. Yazgan, H. Kaya, C. Duran, H. Çuvalcı, S. Bilgin, J. Inorg. Organomet. Polym. Mater. 29, 1514 (2019). https://doi.org/10.1007/s10904-019-01115-1

    Article  CAS  Google Scholar 

  22. A.M. Alsaad, Q.M. Al-Bataineh, A.A. Ahmad, I. Jum’H, N. Alaqtash, A.A. Salameh, Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab68a0

    Article  Google Scholar 

  23. S. Suman, N. Mukurala, A.K. Kushwaha, J. Cryst. Growth 554, 125946 (2021). https://doi.org/10.1016/j.jcrysgro.2020.125946

    Article  CAS  Google Scholar 

  24. S.S. Abdullahi, S. Güner, Y. Koseoglu, I.M. Musa, B.I. Adamu, M.I. Abdulhamid, J. Niger. Assoc. Math. Phys. 35, 241 (2016)

    Google Scholar 

  25. S. Jiao, H. Lu, X. Wang, Y. Nie, D. Wang, S. Gao, J. Wang, ECS J. Solid State Sci. Technol. 8, Q3086 (2019). https://doi.org/10.1149/2.0161907jss

    Article  CAS  Google Scholar 

  26. S.B. Aziz, O.G. Abdullah, M.A. Brza, A.K. Azawy, D.A. Tahir, Results Phys. 15, 102776 (2019). https://doi.org/10.1016/j.rinp.2019.102776

    Article  Google Scholar 

  27. M. Abbasian, N.K. Aali, S.E. Shoja, J. Macromol. Sci. Part A 50, 966 (2013). https://doi.org/10.1080/10601325.2013.813814

    Article  CAS  Google Scholar 

  28. G. Tsagaropoulos, A. Eisenberg, Macromolecules 28, 6067 (1995). https://doi.org/10.1021/ma00122a011

    Article  CAS  Google Scholar 

  29. H. Oh, P.F. Green, Nat. Mater. 8, 139 (2009). https://doi.org/10.1038/nmat2354

    Article  CAS  PubMed  Google Scholar 

  30. M. Reinecker, V. Soprunyuk, M. Fally, A. Sánchez-Ferrer, W. Schranz, Soft Matter 10, 5729 (2014). https://doi.org/10.1039/c4sm00979g

    Article  CAS  PubMed  Google Scholar 

  31. A. Trevisan, S. Piovesan, A. Leonardi, M. Bertocco, P. Nicolosi, M.G. Pelizzo, A. Angelini, Photochem. Photobiol. 82, 1077 (2006). https://doi.org/10.1562/2005-10-27-ra-728

    Article  CAS  PubMed  Google Scholar 

  32. E.I. El-Sayed, A.A. Al-Ghamdi, S. Al-Heniti, F. Al-Marzouki, F. El-Tantawy, Mater. Lett. 65, 317 (2011). https://doi.org/10.1016/j.matlet.2010.10.007

    Article  CAS  Google Scholar 

  33. R. Jetson, K. Yin, K. Donovan, Z. Zhu, Mater. Chem. Phys. 124, 417 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.058

    Article  CAS  Google Scholar 

  34. S. Bhavsar, G.B. Patel, N.L. Singh, Phys. B 533, 12 (2018). https://doi.org/10.1016/j.physb.2017.12.055

    Article  CAS  Google Scholar 

  35. S. Nundy, A. Ghosh, T.K. Mallick, ACS Omega 5, 1033 (2020). https://doi.org/10.1021/acsomega.9b02758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Ryou, T.H. Yoo, Y. Yoon, I.G. Lee, M. Shin, J. Cho, B.J. Cho, W.S. Hwang, ECS J. Solid State Sci. Technol. 9, 045009 (2020). https://doi.org/10.1149/2162-8777/ab8b4b

    Article  CAS  Google Scholar 

  37. H. Hidaka, T. Tsukamoto, Ga2O3-photoassisted decomposition of insecticides, in Gallium oxide. (Elsevier, Amsterdam, 2018)

    Google Scholar 

  38. M. Sun, D. Li, W. Zhang, X. Fu, Y. Shao, W. Li, G. Xiao, Y. He, Nanotechnology (2010). https://doi.org/10.1088/0957-4484/21/35/355601

    Article  PubMed  Google Scholar 

  39. K. Girija, S. Thirumalairajan, A.K. Patra, D. Mangalaraj, N. Ponpandian, Curr. Appl. Phys. 13, 652 (2013). https://doi.org/10.1016/j.cap.2012.11.004

    Article  Google Scholar 

  40. H. Yang, R. Shi, J. Yu, R. Liu, R. Zhang, H. Zhao, L. Zhang, H. Zheng, J. Phys. Chem. C. (2009). https://doi.org/10.1021/jp905829w

    Article  Google Scholar 

  41. T. Shao, P. Zhang, Z. Li, L. Jin, Cuihua Xuebao/Chinese J. Catal. 34, 1551 (2013). https://doi.org/10.1016/S1872-2067(12)60612-3

    Article  CAS  Google Scholar 

  42. J. Liu, W. Lu, Q. Zhong, H. Wu, Y. Li, L. Li, Z. Wang, J. Coll Interface Sci. 519, 255 (2018). https://doi.org/10.1016/j.jcis.2018.02.070

    Article  CAS  Google Scholar 

  43. C.R. Michel, A.H. Martínez-Preciado, Ceram. Int. 48, 9746 (2022). https://doi.org/10.1016/j.ceramint.2021.12.176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors like to acknowledge Kerala State Council for Science, Technology and Environment (KSCSTE) for the research fellowship granted. They also thank Sophisticated Testing and Instrumentation Centre, Cochin University of Science and Technology, Kerala for the SEM-EDS HRTEM and thermal measurements, Sophisticated Analytical Instruments Facility, Mahatma Gandhi University, Kerala for the AFM analysis and National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala for the contact angle measurement assistance.

Funding

Funding was provided by Kerala State Council for Science,Technology and Environment (Grant No. 685/2019).

Author information

Authors and Affiliations

Authors

Contributions

KCS: Conceptualization, Methodology, Investigation, Formal analysis, Writing- original draft. ASN: Data curation, Formal analysis, Writing-Review and Editing. CJ: Review BPR : Review NVU: Review SAC: Supervision, Validation, Writing-Review and Editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to A. C. Saritha.

Ethics declarations

Conflict of interest

The authors declare that they have no known financial or personal competing interests that could have influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthana, C.S., Nair, A.S., Joseph, C. et al. Self-Supporting β-Ga2O3 Reinforced PMMA Composite Films with Multifunctional Traits. J Inorg Organomet Polym 33, 1922–1931 (2023). https://doi.org/10.1007/s10904-023-02632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02632-w

Keywords

Navigation