Skip to main content
Log in

Statistical Optimization and Desirability Function for Producing Nano Silica from Dune Sand by Sol–gel Method Towards Methylene Blue Dye Removal

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work aims to extract amorphous, high-purity silica nanoparticles (n-SiO2) from natural sand using the sol–gel method, a simple, economic, and environmentally friendly chemical process. The parametric optimization by Box–Behnken design was carried out to optimize the synthesis parameters (reaction temperature, reaction time, and SiO2/NaOH ratio). The as-produced silica was characterized by several analytical techniques. A maximum silica yield of 87.62% was achieved when the T = 495.3 °C, t = 2 h and SiO2/NaOH = 7.88. The XRF and EDX results affirmed the high purity of the synthesized silica at 98.4% SiO2. The XRD spectrum shows an amorphous structure of the as-produced silica. Furthermore, the extracted silica exhibited a high specific surface area of 632.7m2/g, an average pore diameter of 2.82 nm, and an average particle size of 9.48 nm. The applicability of the BBD-optimized n-silica as a low-cost adsorbent toward removing Methylene blue (MB) dye from the aqueous environment was investigated. The adsorption kinetic was in excellent accordance with a pseudo-second-order kinetic models and the Temkin isotherm model, with a maximum adsorption capacity of 209.23 mg/g at 55 °C. These findings demonstrate that sand is a promising precursor for producing highly pure mesoporous silica for removing cationic dyes from wastewater and other possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No data were used elsewhere to support this study and it was entirely a new set of data.

References

  1. A. Amjlef, S. Khrach, A. Ait El Fakir, S. Farsad, S. Et-Taleb, N. El Alem, Nanotechnol. Environ. Eng. 6(2), 1–15 (2021). https://doi.org/10.1007/s41204-021-00119-y

    Article  CAS  Google Scholar 

  2. A.H. Jawad, S.E.M. Saber, A.S. Abdulhameed, A. Reghioua, Z.A. ALOthman, L.D. Wilson, Diam. Relat. Mater. 129, 109389 (2022). https://doi.org/10.1016/j.diamond.2022.109389

    Article  CAS  Google Scholar 

  3. L. Sheng, Y. Zhang, F. Tang, S. Liu, Microporous Mesoporous Mater. (2018). https://doi.org/10.1016/j.micromeso.2017.08.023

    Article  Google Scholar 

  4. M. Liu, W. Yin, T.L. Zhao, Q.Z. Yao, S.Q. Fu, G.T. Zhou, Purif. Technol. 272, 118901 (2021). https://doi.org/10.1016/j.seppur.2021.118901

    Article  CAS  Google Scholar 

  5. M.M. Hassan, C.M. Carr, Chemosphere 209, 201–219 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  CAS  PubMed  Google Scholar 

  6. A. Sharma, Z. Syed, U. Brighu, A.B. Gupta, C. Ram, J. Clean. Prod. 220, 23–32 (2019). https://doi.org/10.1016/j.jclepro.2019.01.236

    Article  CAS  Google Scholar 

  7. T. Li, L. Liu, Z. Zhang, Z. Han, Sep. Purif. Technol. 237, 116360 (2020). https://doi.org/10.1016/j.seppur.2019.116360

    Article  CAS  Google Scholar 

  8. S. Ihaddaden, D. Aberkane, A. Boukerroui, D. Robert, J. Water Process. Eng. 49, 102952 (2022). https://doi.org/10.1016/j.jwpe.2022.102952

    Article  Google Scholar 

  9. M. Golmohammadi, M. Honarmand, S. Ghanbari, Spectrochim. Acta A Mol. Biomol. Spectrosc. 229, 117961 (2020). https://doi.org/10.1016/j.saa.2019.117961

    Article  CAS  PubMed  Google Scholar 

  10. N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, Rev. Environ. Sci. Biotechnol. 19(3), 543–560 (2020). https://doi.org/10.1007/s11157-020-09543-z

    Article  CAS  Google Scholar 

  11. J. Wang, Z. Wang, C.L. Vieira, J.M. Wolfson, G. Pingtian, S. Huang, Ultrason. Sonochem. 55, 273–278 (2019). https://doi.org/10.1016/j.ultsonch.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  12. M. Harja, G. Buema, D. Bucur, Sci. Rep. 12(1), 1–18 (2022). https://doi.org/10.1038/s41598-022-10093-3

    Article  CAS  Google Scholar 

  13. F. Fei, Z. Gao, H. Wu, W. Wurendaodi, S. Zhao, S. Asuha, J. Solid State Chem. 291, 121655 (2020). https://doi.org/10.1016/j.jssc.2020.121655

    Article  CAS  Google Scholar 

  14. G. Annadurai, R.S. Juang, D.J. Lee, J. Hazard. Mater. 92, 263–274 (2002). https://doi.org/10.1016/S0304-3894(02)00017-1

    Article  CAS  PubMed  Google Scholar 

  15. A. Cid, J. Simal-Gandara, J. Inorg, Organomet. Polym. Mater. 30(4), 1011–1032 (2020). https://doi.org/10.1007/s10904-019-01331-9

    Article  CAS  Google Scholar 

  16. L. Krishnia, P. Thakur, A. Thakur, Synthesis and applications of nanoparticles (Springer, Singapore, 2022), pp.45–59

    Book  Google Scholar 

  17. M. Bouloudenine, H. Laala-Bouali, K. Djeddou, M. Bououdina, N. Grara, J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02240-0

    Article  Google Scholar 

  18. V.C. Niculescu, Front. Mater. 7, 1–14 (2020). https://doi.org/10.3389/fmats.2020.00036

    Article  Google Scholar 

  19. X. Huang, N.P. Young, H.E. Townley, Nanomater. Nanotechnol. 4, 1–15 (2014). https://doi.org/10.5772/58290

    Article  CAS  Google Scholar 

  20. M. Laad, R. Datkhile, Silicon 13(5), 1433–1439 (2020). https://doi.org/10.1007/s12633-020-00539-6

    Article  CAS  Google Scholar 

  21. N. Raza, W. Raza, S. Madeddu, H. Agbe, R.V. Kumar, K.H. Kim, RSC Adv. 8, 32651–32658 (2018). https://doi.org/10.1039/c8ra06257a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P.P. Nayak, A.K. Datta, Silicon 13(4), 1209–1214 (2020). https://doi.org/10.1007/s12633-020-00509-y

    Article  CAS  Google Scholar 

  23. N. Meftah, M.S. Mahboub, Silicon 12(1), 147–153 (2020). https://doi.org/10.1007/s126

    Article  CAS  Google Scholar 

  24. K. Lazaar, W. Hajjaji, R.C. Pullar, J.A. Labrincha, F. Rocha, F. Jamoussi, J. Afr. Earth Sci. 130, 238–251 (2017). https://doi.org/10.1016/j.jafrearsci.2017.03.017

    Article  CAS  Google Scholar 

  25. D.C. Montgomery, Design and analysis of experiments, 9th edn. (John wiley & sons, New York, 2017)

    Google Scholar 

  26. N. Meftah, A. Hani, A. Merdas, C. Sadik, A. Sdiri, Arab. J. Geosci. 14(23), 1–14 (2021). https://doi.org/10.1007/s12517-021-08591-1

    Article  CAS  Google Scholar 

  27. S. Aissou, N. Bouzidi, L. Cormier, E. Bonet-Martinez, D. Merabet, Boletín de la Sociedad Española de Cerámica y Vidrio 57(6), 221–230 (2018). https://doi.org/10.1016/j.bsecv.2018.05.002

    Article  CAS  Google Scholar 

  28. N.J. Saleh, R.I. Ibrahim, A.D. Salman, Adv. Powder Technol. 26, 1123–1133 (2015). https://doi.org/10.1016/j.apt.2015.05.008

    Article  CAS  Google Scholar 

  29. Y. Leghrieb, R. Mitiche, M.T. Bentebba, M. Djouhri, A. Kriker, Arab. J. Sci. Eng. 37, 2149–2161 (2012). https://doi.org/10.1007/s13369-012-0305-3

    Article  CAS  Google Scholar 

  30. M. Abdelhak, K. Ahmed, B. Abdelkader, Z. Brahim, K. Rachid, Silicon 6, 149–154 (2014). https://doi.org/10.1007/s12633-014-9196-0

    Article  CAS  Google Scholar 

  31. N. Meftah, A. Hani, Mater. Today: Proc. 51, 2105–2108 (2022). https://doi.org/10.1016/j.matpr.2021.12.366

    Article  CAS  Google Scholar 

  32. X. Peng, G. Yang, Y. Shi, Y. Zhou, M. Zhang, S. Li, Sci. Rep. 10(1), 1–10 (2020). https://doi.org/10.1038/s41598-020-60339-1

    Article  CAS  Google Scholar 

  33. A. Mourhly, F. Jhilal, A. El Hamidi, M. Halim, S. Arsalane, Microchem. J. 145, 139–145 (2019). https://doi.org/10.1016/j.microc.2018.10.030

    Article  CAS  Google Scholar 

  34. L.M. Connelly, Medsurg. Nurs. 30(3), 218–158 (2021)

    Google Scholar 

  35. P.E. Imoisili, K.O. Ukoba, T.C. Jen, Bol. La Soc. Esp. Ceram. y Vidr. 59, 159–164 (2020). https://doi.org/10.1016/j.bsecv.2019.09.006

    Article  CAS  Google Scholar 

  36. M.V. Khedkar, S.A. Jadhav, S.B. Somvanshi, P.B. Kharat, K.M. Jadhav, SN Appl. Sci. 2(4), 1–10 (2020). https://doi.org/10.1007/s42452-020-2463-3

    Article  CAS  Google Scholar 

  37. D. Brahmi, D. Merabet, H. Belkacemi, T.A. Mostefaoui, N.A. Ouakli, Ceram. Int. 40, 10499–10503 (2014). https://doi.org/10.1016/j.ceramint.2014.03.021

    Article  CAS  Google Scholar 

  38. Y. Yang, Y. Yang, C. Ni, J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02443-5

    Article  Google Scholar 

  39. S. Arunmetha, A. Karthik, S.R. Srither, M. Vinoth, R. Suriyaprabha, P. Manivasakan, V. Rajendran, RSC Adv. 5(59), 47390–47397 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  40. H. El-Didamony, E. El-Fadaly, A.A. Amer, I.H. Abazeed, Bol. La Soc. Esp. Ceram. y Vidr. 59, 31–43 (2020). https://doi.org/10.1016/j.bsecv.2019.06.004

    Article  CAS  Google Scholar 

  41. P. Velmurugan, J. Shim, K.J. Lee, M. Cho, S.S. Lim, S.K. Seo, K.M. Cho, K.S. Bang, B.T. Oh, J. Ind. Eng. Chem. 29, 298–303 (2015)

    Article  CAS  Google Scholar 

  42. S. Mor, C.K. Manchanda, S.K. Kansal, K. Ravindra, J. Clean. Prod. 143, 1284–1290 (2017). https://doi.org/10.1016/j.jclepro.2016.11.142

    Article  CAS  Google Scholar 

  43. U. Zulfiqar, T. Subhani, S.W. Husain, J. Asian Ceram. Soc. 4, 91–96 (2016). https://doi.org/10.1016/j.jascer.2015.12.001

    Article  Google Scholar 

  44. T.H. Liou, Chem. Eng. J. 171, 1458–1468 (2011). https://doi.org/10.1016/j.cej.2011.05.074

    Article  CAS  Google Scholar 

  45. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, Nat. mater. 7(7), 527–538 (2008). https://doi.org/10.1038/nmat2206

    Article  CAS  PubMed  Google Scholar 

  46. S.S. Hossain, L. Mathur, A. Bhardwaj, P.K. Roy, Int. J. Appl. Ceram. Technol. 16, 1069–1077 (2019). https://doi.org/10.1111/ijac.13164

    Article  CAS  Google Scholar 

  47. M. Naddaf, H. Kafa, I. Ghanem, Silicon 12, 185–192 (2020). https://doi.org/10.1007/s12633-019-00112-w

    Article  CAS  Google Scholar 

  48. A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, F. Jamousssi, N. Tase, Chem. Eng. J. 172, 37 (2011). https://doi.org/10.1016/j.cej.2011.05.015

    Article  CAS  Google Scholar 

  49. X. Tang, Z. Jiang, Z. Li, Z. Gao, Y. Bai, S. Zhao, J. Feng, J. Nat. Gas Sci. Eng. 23, 464 (2015)

    Article  CAS  Google Scholar 

  50. D.J. Rosenberg, S. Alayoglu, R. Kostecki, M. Ahmed, Nanoscale Adv. 1(12), 4878–4887 (2019). https://doi.org/10.1039/c9na00544g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. K. Lazaar, R. Pullar, W. Hajjaji, S. Mefteh, M. Medhioub, F. Jamoussi, Silicon 14(5), 2351–2362 (2022). https://doi.org/10.1007/s12633-021-01251-9

    Article  CAS  Google Scholar 

  52. A.H. Jawad, N.N.A. Malek, A.S. Abdulhameed, R. Razuan, J. Polym. Environ. 28(3), 1068–1082 (2020). https://doi.org/10.1007/s10924-020-01669-z

    Article  CAS  Google Scholar 

  53. O.O. Namal, E. Kalipci, Int. J. Environ. Sci. Technol. (2019). https://doi.org/10.1080/03067319.2019.1656721

    Article  Google Scholar 

  54. A. El Kassimi, A. Boutouil, M. El Himri, M.R. Laamari, M. El Haddad, J. Saudi Chem. Soc. 24(7), 527–544 (2020). https://doi.org/10.1016/j.jscs.2020.05.005

    Article  CAS  Google Scholar 

  55. S. Sareen, S. Kaur, V. Mutreja, A. Sharma, S.K. Kansal, S.K. Mehta, Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01670-x

    Article  Google Scholar 

  56. I. Langmuir, J. Am. Chem. Soc. 40, 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  57. H.M.F. Frenudlich, J. Phys. Chem. 57, 385–471 (1906)

    Google Scholar 

  58. M.I. Temkin, Acta Physiochim. URSS 12, 327–356 (1940)

    CAS  Google Scholar 

  59. S. Kalam, S.A. Abu-Khamsin, M.S. Kamal, S. Patil, ACS Omega 6(48), 32342–32348 (2021). https://doi.org/10.1021/acsomega.1c04661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. G.K. Rajahmundry, C. Garlapati, P.S. Kumar, R.S. Alwi, D.V.N. Vo, Chemosphere 276, 130176 (2021)https://doi.org/10.1016/j.chemosphere.2021.130176

    Article  CAS  PubMed  Google Scholar 

  61. M.A. Al-Ghouti, D.A. Da’ana, J. Hazard. Mater. 393, 122383 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  PubMed  Google Scholar 

  62. R. Lyu, C. Zhang, T. Xia, S. Chen, Z. Wang, X. Luo, L. Wang, C. Wang, Colloids Surf. A Physicochem. Eng. Asp. 606, 125425 (2020). https://doi.org/10.1016/j.colsurfa.2020.125425

    Article  CAS  Google Scholar 

  63. S. Guo, H. Xu, F. Zhang, X. Zhu, X. Li, Colloids Surf. A 546, 244–253 (2018). https://doi.org/10.1016/j.colsurfa.2018.03.028

    Article  CAS  Google Scholar 

  64. X. Han, Y. Wang, N. Zhang, J. Meng, Y. Li, J. Liang, Colloids Surf. A Physicochem. Eng. Asp. 617, 126391 (2021). https://doi.org/10.1016/j.colsurfa.2021.126391

    Article  CAS  Google Scholar 

  65. H. Tehubijuluw, R. Subagyo, M.F. Yulita, R.E. Nugraha, Y. Kusumawati, H. Bahruji, A. Abdul Jalil, H. Hartati, D. Prasetyoko, Environ. Sci. Pollut. Res. 28(28), 37354–37370 (2021). https://doi.org/10.1007/s11356-021-13285-y

    Article  CAS  Google Scholar 

  66. N. Yuan, H. Cai, T. Liu, Q. Huang, X. Zhang, Adsorp. Sci. Technol. 37(3–4), 333–348 (2019). https://doi.org/10.1177/0263617419827438

    Article  CAS  Google Scholar 

  67. F. Temel, M. Turkyilmaz, S. Kucukcongar, Eur. Polym. J. 125, 109540 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109540

    Article  CAS  Google Scholar 

  68. A.H. Jawad, A.S. Abdulhameed, Surf. Interfaces 18, 100422 (2020). https://doi.org/10.1016/j.surfin.2019.100422

    Article  CAS  Google Scholar 

  69. L. Mouni, L. Belkhiri, J.C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani, H. Remini, Clay Sci. 153, 38–45 (2018). https://doi.org/10.1016/j.clay.2017.11.034

    Article  CAS  Google Scholar 

  70. A.H. Jawad, S.N. Surip, Diam. Relat. Mater. 127, 109199 (2022). https://doi.org/10.1016/j.diamond.2022.109199

    Article  CAS  Google Scholar 

  71. S. Liu, X. Chen, W. Ai, C. Wei, J. Clean. Prod. 212, 1062–1071 (2019). https://doi.org/10.1016/j.jclepro.2018.12.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Centre de Recherche Scientifique et Technique en Analyses Physico–Chimiques (CRAPC) for providing research facilities. All authors would like to thank the esteemed reviewers for these constructive comments and suggestions.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AH and NM The first draft of the manuscript was written by NM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nassima Meftah.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1066.2 kb)

Supplementary material 2 (DOCX 13.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hani, A., Meftah, N., Zeghoud, L. et al. Statistical Optimization and Desirability Function for Producing Nano Silica from Dune Sand by Sol–gel Method Towards Methylene Blue Dye Removal. J Inorg Organomet Polym 33, 1882–1897 (2023). https://doi.org/10.1007/s10904-023-02612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02612-0

Keywords

Navigation