Skip to main content

Advertisement

Log in

Effect of Water Absorption on Graphene Nanoplatelet and Multiwalled Carbon Nanotubes-impregnated Glass Fibre-Reinforced Epoxy Composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, the effect of water uptake on graphene nanoplatelets (GNP) and multiwalled carbon nanotube (MWCNT)-impregnated glass fibre-reinforced epoxy composites was examined. The composite was manufactured using a hand lay-up and vacuum bagging technique. The nanofiller was mixed with epoxy using a mechanical stirrer, high-shear mixer, and ultrasonic probe machine. In situ electromechanical testing was performed on the specimens. The study found that the weight content and type of nanofiller impact the composites' water uptake and mechanical properties. The water uptake of GNP–glass, MWCNT–glass, and GNP–MWCNT–glass hybrid composites decrease with the addition of different nanofiller contents. Adding a 1.5 GNP–MWCNT hybrid mixture increased the composite's tensile and flexural strengths to 269.3 and 294.4 MPa, respectively. The GNP–MWCNT–glass hybrid composite shows a positive synergy effect on the enhancement of water-ageing with self-sensing ability, while the GNP–glass, MWCNT–glass composites show a less positive effect on water ageing sensing behaviour. The nanofillers dispersion and fracture surface morphological observations were disclosed using a field emission scanning electron microscope. The results established that the GNP–MWCNT–glass hybrid exhibits good potential for in situ damage monitoring of composites and can support their development and application as a smart material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. K. Foroutani, B. Pourabbas, M. Sharif, M. Mohammadizadeh, M. Fallahian, S. Khademi, Preparation of conductive flexible films by in situ deposition of polythiophene nanoparticles on polyethylene naphthalate. Mater. Sci. Semicond. Process. 18, 6–14 (2014)

    Article  CAS  Google Scholar 

  2. G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)

    Article  CAS  Google Scholar 

  3. N. Azimi, A. Gandomkar, M. Sharif, Relationship between production condition, microstructure and final properties of chitosan/graphene oxide–zinc oxide bionanocomposite (Polym Bull. Springer, Berlin Heidelberg, 2022), 140, pp. 1–15

  4. M. Bahrani, M. Sharif, K. Amirazodi, Preparation and characterization of polythiophene/graphene oxide/epoxy nanocomposite coatings with advanced properties. Polym. Bull. 79, 263–284 (2022)

    Article  CAS  Google Scholar 

  5. B. Dey, W. Ahmad, A. Almezeni, G. Sarkhel, D. Sekhar, A. Choudhury, Enhancing electrical, mechanical, and thermal properties of polybenzimidazole by 3D carbon nanotube @ graphene oxide hybrid. Compos. Commun. 17, 87–96 (2020)

    Article  Google Scholar 

  6. E. Bazireh, M. Sharif, Polythiophene–coated multi–walled carbon nanotube–reinforced epoxy nanocomposites for enhanced mechanical, electrical and thermal properties. Polym. Bull. 77, 4537–4553 (2020)

    Article  CAS  Google Scholar 

  7. M. Sharif, A. Heidari, A.A. Meybodi, Polythiophene/Zinc Oxide/Graphene Oxide Ternary Photocatalyst: synthesis, characterization and application. Polym. Technol. Mater. 60, 1450–1460 (2021)

    CAS  Google Scholar 

  8. T.M. Abbas, S.I. Hussein, Improving the mechanical properties, roughness, thermal stability, and contact angle of the acrylic polymer by graphene and carbon fiber doping for waterproof coatings. J. Inorg. Organomet. Polym. Mater. 32, 3788–3796 (2022)

    Article  CAS  Google Scholar 

  9. S.T. Hezarjaribi, S. Nasirian, An enhanced fast ethanol sensor based on zinc oxide/nickel oxide nanocomposite in dynamic situations. J. Inorg. Organomet. Polym. Mater. 30, 4072–4081 (2020)

    Article  CAS  Google Scholar 

  10. A. Choudhury, Preparation and characterization of nanocomposites of poly-p-phenylene benzobisthiazole with graphene nanosheets. RSC Adv. 4, 8856 (2014)

    Article  CAS  Google Scholar 

  11. G..M.. Raja, A.. Vasanthanathan, K.. Jeyasubramanian, Novel Ternary Epoxy Resin Composites Obtained by Blending Graphene Oxide and Polypropylene Fillers: An Avenue for the Enhancement of Mechanical Characteristics. J. Inorg. Organomet. Polym. Mater. 33(2), 383–397 (2022)

    Article  Google Scholar 

  12. N. Ashwin Karthick, R. Thangappan, M. Arivanandhan, A. Gnanamani, R. Jayavel, A Facile synthesis of ferrocene functionalized graphene oxide nanocomposite for electrochemical sensing of lead. J. Inorg. Organomet. Polym. Mater. 28, 1021–1028 (2018)

    Article  CAS  Google Scholar 

  13. L.. Wang, F.. Aslani, Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales. Constr. Build. Mater. 314, 125679 (2022)

    Article  CAS  Google Scholar 

  14. S. Nauman, Piezoresistive Sensing Approaches for Structural Health Monitoring of Polymer. Composites—A Rev. Eng 2, 197–226 (2021)

    Google Scholar 

  15. H. Zhang, E. Bilotti, T. Peijs, The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. Nanocomposites 1, 167–184 (2015)

    Article  CAS  Google Scholar 

  16. H. Souri, J. Yu, H. Jeon, J.W. Kim, C.-M. Yang, N.-H. You et al., A theoretical study on the piezoresistive response of carbon nanotubes embedded in polymer nanocomposites in an elastic region. Carbon N Y 120, 427–437 (2017)

    Article  CAS  Google Scholar 

  17. A. Bouhamed, A. Al-Hamry, C. Müller, S. Choura, O. Kanoun, Assessing the electrical behaviour of MWCNTs/epoxy nanocomposite for strain sensing. Compos. Part B Eng. 128, 91–99 (2017)

    Article  CAS  Google Scholar 

  18. X.F. Sánchez-Romate, R. Gutiérrez, A. Cortés, A. Jiménez-Suárez, S.G. Prolongo, Multifunctional coatings based on GNP/epoxy systems: strain sensing mechanisms and Joule’s heating capabilities for de-icing applications. Prog. Org. Coat. 167, 106829 (2022)

    Article  Google Scholar 

  19. M.A.A. Ahmad, M.R. Mohd Jamir, M.S. Abdul Majid, M.R.A. Refaai, C.E. Meng, M. Abu Bakar, Damage self-sensing and strain monitoring of glass-reinforced epoxy composite impregnated with graphene nanoplatelet and multiwalled carbon nanotubes. Nanotechnol. Rev. 11, 1977–90 (2022)

    Article  CAS  Google Scholar 

  20. D2734 A, Test Methods for Void Content of Reinforced Plastics. ASTM Int. 2003. p. 3–5

  21. D570 A. Standard Test Method for Water Absorption of Plastics 1. 2014. p. 46–9

  22. D3039 A. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. 2014. p. 1–13

  23. D7264 A. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. 2014. p. 1–10

  24. W.M.A. Wan Ramli, M.S. Abdul Majid, M.J.M. Ridzuan, M.T.H. Sultan, N.A.M. Amin, A.G. Gibson, The effect of nanomodified epoxy on the tensile and flexural properties of Napier fiber reinforced composites. Polym. Compos. 41, 824–837 (2020)

    Article  CAS  Google Scholar 

  25. M.K.R. Hashim, M.S. Abdul Majid, M.R.M. Jamir, F.H. Kasim, M.T.H. Sultan, The effect of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (PALF)/carbon hybrid laminate composites. Polym. (Basel) 13, 455 (2021)

    Article  CAS  Google Scholar 

  26. M. Jawaid, H.P.S.A. Khalil, Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm-jute fibers reinforced epoxy hybrid composite. BioResources 6, 2309–2322 (2011)

    Article  CAS  Google Scholar 

  27. Y. Dan-mallam, T.W. Hong, M.S. Abdul Majid, Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite. Int. J. Polym. Sci. 2015, 1–13 (2015)

    Article  Google Scholar 

  28. S.K. Reddy, S. Kumar, K.M. Varadarajan, P.R. Marpu, T.K. Gupta, M. Choosri, Strain and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites. Mater. Sci. Eng. C 92, 957–968 (2018)

    Article  CAS  Google Scholar 

  29. I.M. Inuwa, R. Arjmandi, A.N. Ibrahim, M.K.M. Haafiz, S.L. Wong, K. Majeed et al., Enhanced mechanical and thermal properties of hybrid graphene nanoplatelets/multiwall carbon nanotubes reinforced polyethylene terephthalate nanocomposites. Fibers Polym. 17, 1657–1666 (2016)

    Article  CAS  Google Scholar 

  30. M.A.A. Ahmad, M.S. Abdul Majid, M.J.M. Ridzuan, M.N. Mazlee, A.G. Gibson, Dynamic mechanical analysis and effects of moisture on mechanical properties of interwoven hemp/polyethylene terephthalate (PET) hybrid composites. Constr. Build. Mater. 179, 265–276 (2018)

    Article  CAS  Google Scholar 

  31. A.B. Maslinda, M.S. Majid, M.J.M. Ridzuan, M. Afendi, A.G. Gibson, Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 167, 227–237 (2017)

    Article  Google Scholar 

  32. M.J.M. Ridzuan, M.S.A. Majid, M. Afendi, K. Azduwin, N.A.M. Amin, J.M. Zahri et al., Moisture absorption and mechanical degradation of hybrid Pennisetum purpureum/glass–epoxy composites. Compos. Struct. 141, 110–116 (2016)

    Article  Google Scholar 

  33. E.F. Sucinda, M.S. Abdul Majid, M.J.M. Ridzuan, E.M. Cheng, H.A. Alshahrani, N. Mamat, Development and characterisation of packaging film from napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites. Int. J. Biol. Macromol. 187, 43–53 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Dan-Mallam, M.Z. Abdullah, P.S.M.M. Yusoff, The effect of hybridization on mechanical properties of woven kenaf fiber reinforced polyoxymethylene composite. Polym. Compos. 35, 1900–1910 (2014)

    Article  CAS  Google Scholar 

  35. I. Sen, A. Aral, Y. Seki, M. Sarikanat, K. Sever, Variations of mechanical properties of jute/polyester composite aged in various media. J. Compos. Mater. 46, 2219–2225 (2012)

    Article  Google Scholar 

  36. C. Arribas, M.G. Prolongo, M. Sánchez-Cabezudo, R. Moriche, S.G. Prolongo, Hydrothermal ageing of graphene/carbon nanotubes/epoxy hybrid nanocomposites. Polym. Degrad. Stab. 170, 109003 (2019)

    Article  Google Scholar 

  37. S.G. Prolongo, A. Jiménez-Suárez, R. Moriche, A. Ureña, Influence of thickness and lateral size of graphene nanoplatelets on water uptake in epoxy/graphene nanocomposites. Appl Sci. 2018;8

  38. A. Ahmed, S.A. Moosa, Ahmad Ramazani, F. Abdul Karim Kubba, Synergetic effects of graphene and nonfunctionalized carbon nanotubes hybrid reinforced epoxy matrix on mechanical, thermal and wettability properties of nanocomposites. Am. J. Mater. Sci. 7, 1–11 (2017)

    Google Scholar 

  39. S. Bal, S. Saha, Effect of sea and distilled water conditioning on the overall mechanical properties of carbon nanotube/epoxy composites. Int. J. Damage Mech. 26, 758–770 (2017)

    Article  CAS  Google Scholar 

  40. J. Naveen, M. Jawaid, E.S. Zainudin, M. Thariq Hameed Sultan, R. Yahaya., Improved mechanical and moistureresistant properties of woven hybrid epoxy composites by graphene nanoplatelets (GNP). Materials (Basel). 12, 1249 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O. Starkova, E. Mannov, K. Schulte, A. Aniskevich, Strain-dependent electrical resistance of epoxy/MWCNT composite after hydrothermal aging. Compos. Sci. Technol. [Internet] Elsevier Ltd. 117, 107–113 (2015)

    Article  CAS  Google Scholar 

  42. Q. Zheng, B. Han, J. Ou. NanoComposites for structural health monitoring. Nanotechnol Eco-efficient Constr [Internet]. Elsevier; 2019. p. 227–59

  43. S. Kopsidas, G.B. Olowojoba, Multifunctional epoxy composites modified with a graphene nanoplatelet/carbon nanotube hybrid. J. Appl. Polym. Sci. 138, 50890 (2021)

    Article  CAS  Google Scholar 

  44. A. Namdev, A. Telang, R. Purohit, Experimental investigation on mechanical and wear properties of GNP/Carbon fiber/epoxy hybrid composites. Mater. Res. Exp. 9, 025303 (2022)

    Article  Google Scholar 

  45. G.. Georgousis, C.. Pandis, A.. Kalamiotis, P.. Georgiopoulos, A.. Kyritsis, E.. Kontou et al., Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos. Part B Eng. 68, 162–169 (2015)

    Article  CAS  Google Scholar 

  46. X.F. Sánchez-Romate, P. Terán, G. Prolongo, S. Sánchez, M. Ureña, Hydrothermal ageing on self-sensing bonded joints with novel carbon nanomaterial reinforced adhesive films. Polym. Degrad. Stab. 177, 109170 (2020)

    Article  Google Scholar 

  47. C.. Luan, X.. Yao, C.. Zhang, J.. Fu, B.. Wang, Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology. Compos. Sci. Technol. 188, 107986 (2020)

    Article  CAS  Google Scholar 

  48. M. Bragaglia, L. Paleari, F.R. Lamastra, D. Puglia, F. Fabbrocino, F. Nanni, Graphene nanoplatelet, multiwall carbon nanotube, and hybrid multiwall carbon nanotube–graphene nanoplatelet epoxy nanocomposites as strain sensing coatings. J. Reinf Plast. Compos. 40, 632–643 (2021)

    Article  CAS  Google Scholar 

  49. H. Suherman, R. Dweiri, Y. Mahyoedin, D. Duskiardi, Investigation of electrical-mechanical performance of epoxy-based nanocomposites filled with hybrid electrically conductive fillers. Mater. Res. Exp. 6, 115010 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), for providing equipment, and technical assistance. The authors are grateful for the fruitful discussions and input from the staff of Universiti Putra Malaysia (UPM) and Universiti Malaysia Perlis (UniMAP).

Funding

This work was financed by the Ministry of Higher Education, Malaysia, through the Malaysian Technical University Network (MTUN) Research Grant Scheme (Grant No. 9002-00099/9028-00010).

Author information

Authors and Affiliations

Authors

Contributions

MJMR, MAAA and MSAM: designed the entire story in this manuscript, performed all tests and data analysis. SMS, ABS, FM: were designed and revised the manuscript. All authors discussed the methods, results and checked the manuscripts.

Corresponding author

Correspondence to M. J. M. Ridzuan.

Ethics declarations

Conflict of interest

The authors state no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.A.A., Ridzuan, M.J.M., Abdul Majid, M.S. et al. Effect of Water Absorption on Graphene Nanoplatelet and Multiwalled Carbon Nanotubes-impregnated Glass Fibre-Reinforced Epoxy Composites. J Inorg Organomet Polym 33, 1802–1816 (2023). https://doi.org/10.1007/s10904-023-02610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02610-2

Keywords:

Navigation