Skip to main content

Advertisement

Log in

Construction of the Embedded Li4Ti5O12-MWCNTs Nanocomposite Electrode for Diverse Applications in Electrochemical Sensing and Rechargeable Battery

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Here, a facile and cost-effective hydrothermal method was used to synthesize lithium titanate (Li4Ti5O12, (LTO))-multiwalled carbon nanotubes (MWCNTs) nanocomposite for the bifunctional property of sensing and energy storage applications. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to confirm the formation of LTO-MWCNTs nanocomposite. The electrochemical sensing of Dopamine (DA) at LTO-MWCNTs modified glassy carbon electrode (GCE) was studied. The modified electrode demonstrated remarkable sensitivity, with a detection limit of 1.54 µM of DA. Moreover, the modified electrode was used for the selective measurement of DA in presence of 5-hydroxytryptamine (5-HT) and folic acid (FA) without interfering with their respective potentials. The modified electrode was used to quantify the DA in commercial DA injection sample with satisfactory recoveries. The modified LTO-MWCNTs/GCE electrode showed acceptable reproducibility and excellent stability. In addition, LTO-MWCNTs nanocomposite electrode delivered a high initial discharge capacity of 176 mAh g− 1 at a charge-discharge rate of 1 C in a constant-current charge-discharge experiment, which proved its efficacy as a rechargeable battery anode material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Yao, X. Xia, C. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, J. Tu, Smart Construction of Integrated CNTs/Li4Ti5O12 Core/Shell arrays with Superior High-Rate performance for application in Lithium-Ion Batteries. Adv. Sci. 5, 1700786 (2018)

    Article  Google Scholar 

  2. Y. Chen, H. Zhang, Y. Li, Y. Chen, T. Luo, Electrochemical performance of Li4Ti5O12/carbon nanotubes/graphene composite as an anode material in lithium-ion batteries, international journal of hydrogen energy. Int. J. Hydrog. Energy 42, 7195–7201 (2017)

    Article  CAS  Google Scholar 

  3. B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mat. Sci. Eng. R Rept. 98, 1–71 (2015)

    Article  Google Scholar 

  4. L. Wang, S. Yue, Q. Zhang, Y. Zhang, Y.R. Li, C.S. Lewis, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, S.S. Wong, Morphological and Chemical tuning of high-energy-density metal oxides for Lithium-Ion Battery Electrode Applications. ACS Energy Lett. 2, 1465–1478 (2017)

    Article  CAS  Google Scholar 

  5. X. Guo, C. Wang, M. Chen, J. Wang, J. Zheng, Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. J. Power Sources 214, 107–112 (2012)

    Article  CAS  Google Scholar 

  6. W. Liu, D. Shao, G. Luo, Q. Gao, G. Yan, J. He, D. Chen, X. Yu, Y. Fang, Mesoporous spinel Li4Ti5O12 nanoparticles for high rate lithium-ion battery anodes. Electrochim. Acta 133, 578–582 (2014)

    Article  CAS  Google Scholar 

  7. Y. Liu, W. Wang, J. Chen, X. Li, Q. Cheng, G. Wang, Fabrication of porous lithium titanate self-supporting anode for high performance lithium-ion capacitor. J. Energy Chem. 50, 344–350 (2020)

    Article  Google Scholar 

  8. S. Abureden, F.M. Hassan, G. Lui, W. Ahn, S. Sy, A. Yu, Z. Chen, Multigrain electrospun nickel doped lithium titanate nanofibers with high power lithium ion storage. J. Mater. Chem. A 4, 12638–12647 (2016)

    Article  CAS  Google Scholar 

  9. P.K. Alaboina, Y. Ge, M.J. Uddin, Y. Liu, D. Lee, S. Park, X. Zhang, S.J. Cho, Nanoscale porous lithium titanate anode for superior high temperature performance. ACS Appl. Mater. Interfaces 8, 12127–12133 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. W. Fang, X. Cheng, P. Zuo, Y. Ma, L. Liao, G. Yin, Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries. Solid State Ionics. 244, 52–56 (2013). https://doi.org/10.1016/j.ssi.2013.04.025

    Article  CAS  Google Scholar 

  11. H. Ge, L. Chen, W. Yuan, Y. Zhang, Q. Fan, H. Osgood, D. Matera, X.M. Song, G. Wu, Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J. Power Sources 297, 436–441 (2015)

    Article  CAS  Google Scholar 

  12. A. Nugroho, S.J. Kim, K.Y. Chung, B.W. Cho, Y.W. Lee, J. Kim, Facile synthesis of nanosized Li4Ti5O12 in supercritical water. Electrochem. Commun. 13, 650–653 (2011)

    Article  CAS  Google Scholar 

  13. J. Coelho, A. Pokle, S.H. Park, N. McEvoy, N.C. Berner, G.S. Duesberg, V. Nicolosi, Lithium titanate/carbon nanotubes composites processed by ultrasound irradiation as anodes for lithium ion batteries. Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

  14. Z. Wang, G. Chen, J. Xu, Z. Lv, W. Yang, Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries. J. Phys. Chem. Solids 72, 773–778 (2011)

    Article  CAS  Google Scholar 

  15. W. Wang, H. Wang, S. Wang, Y. Hu, Q. Tian, S. Jiao, Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries. J. Power Sources 228, 244–249 (2013)

    Article  CAS  Google Scholar 

  16. Z. Zhang, L. Cao, J. Huang, S. Zhou, Y. Huang, Y. Cai, Hydrothermal synthesis of Zn-doped Li4Ti5O12 with improved high rate properties for lithium ion batteries. Ceram. Int. 39, 6139–6143 (2013)

    Article  CAS  Google Scholar 

  17. Z. Weng, Z. Wang, W. Peng, H. Guo, X. Li, An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/ Li4Ti5O12 full-cell. Ceram. Int. 40, 10053–10059 (2014)

    Article  Google Scholar 

  18. K. Zhu, H. Gao, G. Hu, A flexible mesoporous Li4Ti5O12-rGO nanocomposite film as free-standing anode for high rate lithium ion batteries. J. Power Sources 375, 59–67 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.053

    Article  CAS  Google Scholar 

  19. K. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195, 6250–6254 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.104

    Article  CAS  Google Scholar 

  20. M. Ojha, J. Le Houx, R. Mukkabla, D. Kramer, R.G. Andrew Wills, M. Deepa, Lithium titanate/pyrenecarboxylic acid decorated carbon nanotubes hybrid - alginate gel supercapacitor. Electrochim. Acta 309, 253–263 (2019)

    Article  CAS  Google Scholar 

  21. Y. Qian, X. Cai, C. Zhang, H. Jiang, L. Zhou, B. Li, L. Lai, A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor. Electrochim. Acta 258, 1311–1319 (2017)

    Article  CAS  Google Scholar 

  22. S. Repp, E. Harputlu, S. Gurgen, M. Castellano, N. Kremer, N. Pompe, J. Wörner, A. Hoffmann, R. Thomann, F.M. Emen, S. Weber, K. Ocakoglu, E. Erdem, Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale. 10, 1877–1884 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. R. Xue, J. Yan, L. Jiang, B. Yi, Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors. Mater. Chem. Phys. 160, 375–382 (2015)

    Article  CAS  Google Scholar 

  24. E. Zhao, C. Qin, H.R. Jung, G. Berdichevsky, A. Nese, S. Marder, G. Yushin, Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 10, 3977–3984 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. L. Wang, C. Tang, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, Synthesis and characterization of Li4Ti5O12 anode materials with enhanced high-rate performance in lithium-ion batteries. MRS Adv. (2018). https://doi.org/10.1557/adv.2018.247

    Article  Google Scholar 

  26. A. Sivashanmugam, S. Gopukumar, R. Thirunakaran, C. Nithya, S. Prema, Novel Li4Ti5O12/Sn nanocomposites as anode material for lithium-ion batteries. Mater. Res. Bull. 46, 492–500 (2011)

    Article  CAS  Google Scholar 

  27. T.F. Yi, J.Z. Wu, M. Li, Y.R. Zhu, Y. Xie, R.S. Zhu, Enhanced fast charge–discharge performance of Li4Ti5O12 as anode materials for lithium-ion batteries by ce and CeO2 modification using a facile method. RSC Adv. 5, 37367 (2015)

    Article  CAS  Google Scholar 

  28. C. Jiang, E. Hosono, M. Ichihara, I. Honma, H. Zhou, Synthesis of nanocrystalline Li4Ti5O12 by chemical lithiation of anatase nanocrystals and post annealing. J. Electrochem. Soc. 155, A553–A556 (2008)

    Article  CAS  Google Scholar 

  29. L. Zhao, Y.S. Hu, H. Li, Z. Wang, L. Chen, Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23, 1385–1388 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. Y.G. Guo, Y.S. Hu, W. Sigle, J. Maier, Superior Electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 19, 2087–2091 (2007)

    Article  CAS  Google Scholar 

  31. G.V. Prasad, V. Vinothkumar, S.J. Jang, D. Eun Oh, T.H. Kim, Multi-walled carbon nanotube/graphene oxide/poly(threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples. Microchem. J. 184, 108205 (2023)

    Article  Google Scholar 

  32. R. Mehrkhah, M. Mohammadi, A. Zenhari, M. Baghayeri, M.R. Roknabadi, Antibacterial evaporator based on wood-reduced graphene oxide/titanium oxide nanocomposite for long-term and highly efficient solar-driven wastewater treatment. Ind. Eng. Chem. Res. (2022). https://doi.org/10.1021/acs.iecr.2c02528

    Article  Google Scholar 

  33. H. KarimiMaleh, Y. Orooji, F. Karimi, C. Karaman, Y. Vasseghian, E.N. Dragoi, O. Karaman, Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv. Compos. Hybrid. Mater. 6, 29 (2023). https://doi.org/10.1007/s42114-022-00597-x

    Article  CAS  Google Scholar 

  34. M. Nodehi, M. Baghayeri, A. Kaffash, Application of BiNPs/MWCNTs-PDA/GC sensor to measurement of tl (1) and pb (II) using stripping voltammetry. Chemosphere 301, 134701 (2022)

    Article  CAS  PubMed  Google Scholar 

  35. M. Nodehi, M. Baghayeri, H. Veisi, Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta 230, 122288 (2021)

    Article  CAS  PubMed  Google Scholar 

  36. M. Baghayeri, M. Ghanei-Motlagh, R. Tayebee, M. Fayazi, F. Narenji, Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of as(III) in water resources. Anal. Chim. Acta 1099, 60e67 (2020)

    Article  Google Scholar 

  37. J. Huang, Z. Jiang, The preparation, and characterization of Li4Ti5O12/carbon nanotubes for lithium-ion battery. Electrochim. Acta 53, 7756–7759 (2008)

    Article  CAS  Google Scholar 

  38. X. Li, M. Qu, Y. Huai, Z. Yu, Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nanotubes for lithium-ion battery. Electrochim. Acta 55, 2978–2982 (2010)

    Article  CAS  Google Scholar 

  39. L. Wang, Y. Zhang, C.L. McBean, M.E. Scofield, J. Yin, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, S.S. Wong, Understanding the effect of preparative approaches in the formation of “Flower-like” Li4Ti5O12-multiwalled carbon nanotube composite motifs with performance as high-rate anode materials for Li-ion battery applications. J. Electrochem. Soc. 164, A524–A534 (2017)

    Article  CAS  Google Scholar 

  40. W. Fang, P. Zuo, Y. Ma, X. Cheng, L. Liao, G. Yin, Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium-ion battery. Electrochim. Acta 94, 294–299 (2013)

    Article  CAS  Google Scholar 

  41. N. Yusoff, A. Pandikumar, R. Ramaraj, H.N. Lim, N.M. Huang, Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim. Acta. 182, 2091–2114 (2015)

    Article  CAS  Google Scholar 

  42. K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 405, 3753–3771 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. M. Raj, P. Gupta, R.N. Goyal, Y.B. Shim, Graphene/conducting polymer nano-composite loaded screen-printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens. Actuator B-Chem. 239, 993–1002 (2017)

    Article  CAS  Google Scholar 

  44. S. Huang, S. Song, H. Yue, X. Gao, B. Wang, E. Guo, ZnO nanosheet balls anchored onto graphene foam for electrochemical determination of dopamine in the presence of uric acid. Sens. Actuator B-Chem. 277, 381–387 (2018)

    Article  CAS  Google Scholar 

  45. K. Vuorensola, H. Siren, U. Karjalainen, Determination of dopamine and methoxycatecholamines in patient urine by liquid chromatography with electrochemical detection and by capillary electrophoresis coupled with spectrophotometry and mass spectrometry. J. Chromatogr. B 788, 277–289 (2003)

    Article  CAS  Google Scholar 

  46. P. Song, O.S. Mabrouk, N.D. Hershey, R.T. Kennedy, Vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography – mass spectrometry. Anal. Chem. 84, 412–419 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau, B. Madea, Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci. Int. 113, 359–366 (2000)

    Article  CAS  PubMed  Google Scholar 

  48. H.R. Kim, T.H. Kim, S.H. Hong, H.G. Kim, Direct detection of tetrahydrobiopterin (BH4) and dopamine in rat brain using liquid chromatography coupled electrospray tandem mass spectrometry. Biochem. Biophys. Res. Commun. 419, 632–637 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. M.E.P. Hows, L. Lacroix, C. Heidbreder, A.J. Organ, A.J. Shah, High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J. Neurosci. Methods 138, 123–132 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. K. Wu, J. Fei, S. Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem. 318, 100–106 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. A.C. Anitha, K. Asokan, Sekar, highly sensitive and selective serotonin sensor based on gamma rayirradiated tungsten trioxide nanoparticles. Sens. Actuator B-Chem. 238, 667–675 (2017)

    Article  Google Scholar 

  52. T.H.K. Minami, Y. Uezono, M. Shiraishi, J. Ogata, T. Okamoto, A. Shigematsu, The tramadol metabolite, O-Desmethyl tramadol, inhibits 5-Hydroxytryptamine type 2 C receptors expressed in xenopus oocytes. Pharmacology 77, 93–99 (2006)

    Article  PubMed  Google Scholar 

  53. N.K. Sadanandhan, M. Cheriyathuchenaaramvalli, S.J. Devaki, A.R. Ravindranatha Menon, PEDOT-reduced graphene oxide-silver hybrid nanocomposite modified transducer for the detection of serotonin. J. Electroanal. Chem. (2017). https://doi.org/10.1016/j.jelechem.2017.04.027

    Article  Google Scholar 

  54. Y. Wang, S. Wang, L. Tao, Q. Min, J. Xiang, Q. Wang, J. Xie, Y. Yue, S. Wu, X. Li, H. Ding, A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens. Bioelectron. 65, 31–38 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. J. Ishida, T. Yoshitake, K. Fujino, K. Kawano, J. Kehr, M. Yamaguchi, Serotonin monitoring in microdialysate from rat brain by microbore-liquid chromatography with fluorescence detection. Anal. Chim. Acta 365, 227–232 (1998)

    Article  CAS  Google Scholar 

  56. C.S. Petinal, J.P. Lamas, C.G. Jares, M. Lompart, R. Cela, Rapid screening of selective serotonin re-uptake inhibitors in urine samples using solid-phase microextraction gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 382, 1351–1359 (2005)

    Article  Google Scholar 

  57. N.W. Barnett, B.J. Hindson, S.W. Lewis, Determination of 5-hydroxytryptamine (serotonin) and related indoles by flow injection analysis with acidic potassium permanganate chemiluminescence detection. Anal. Chim. Acta 362, 131–139 (1998)

    Article  CAS  Google Scholar 

  58. Z. Zhu, H. Wu, S. Wu, Z. Huang, Y. Zhu, L. Xi, Determination of methotrexate and folic acid by ion chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube modified electrode. J. Chromatogr. A 1283, 62–67 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. M.E. Carter, S. Ardeman, V. Winocour, J. Perry, I. Chanarin, Rheumatoid arthritis and pernicious anaemia. Ann. Rheum. Dis. 27, 454 (1968)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. H. Beitollahi, S.G. Ivari, M.T. Mahani, A double electrochemical platform for ultrasensitive and simultaneous determination of 6-mercaptopurine and folic acid based on a carbon paste electrode modified with zno-cuo nanoplates and 2-chlorobenzoyl ferrocene. ECS J. Solid State Sci. Tech. 6, M29–M35 (2017)

    Article  CAS  Google Scholar 

  61. F. Sczesny, G. Hempel, J. Boos, G. Blaschke, Capillary electrophoretic drug monitoring of methotrexate and leucovorin and their metabolites. J. Chromatogr. B 718, 177–185 (1998)

    Article  CAS  Google Scholar 

  62. S. Belz, C. Frickel, C. Wolfrom, H. Nau, G. Henze, High-performance liquid chromatographic determination of methotrexate, 7-hydroxymethotrexate, 5-methyltetrahydrofolic acid and folinic acid in serum and cerebrospinal fluid. J. Chromatogr. B 661, 109–118 (1994)

    Article  CAS  Google Scholar 

  63. M. Safaei, H. Beitollahi, M.R. Shishehbore, Simultaneous determination of epinephrine and folic acid using the Fe3O4@SiO2/GR nanocomposite modified graphite. Russ. J. Electrochem. 54, 851–859 (2018)

    Article  CAS  Google Scholar 

  64. V.K. Gupta, A.K. Singh, M.A. Khayat, B. Gupta, Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal. Chim. Acta 590, 81–90 (2007)

    Article  CAS  PubMed  Google Scholar 

  65. H. Beitollahi, S. Nekooei, Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of Isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis 28, 645–653 (2016)

    Article  CAS  Google Scholar 

  66. M. Baghayeri, A. Amiri, M. Fayazi, M. Nodehi, A. Esmaeelnia, Electrochemical detection of bisphenol a on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Mater. Chem. Phys. 261, 124247 (2021)

    Article  CAS  Google Scholar 

  67. M. Baghayeri, R. Ansari, M. Nodehi, H. Veisi, Designing and fabrication of a novel gold nanocomposite structure: application in electrochemical sensing of bisphenol A. Int. J. Environ. Anal. Chem. (2018). https://doi.org/10.1080/03067319.2018.1512595

    Article  Google Scholar 

  68. M. Nodehi, M. Baghayeri, R. Behazin, H. Veisi, Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem. J. 162, 105825 (2021)

    Article  CAS  Google Scholar 

  69. M. Baghayeri, B. Maleki, R. Zarghani, Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater. Sci. Eng. C 44, 175–182 (2014)

    Article  CAS  Google Scholar 

  70. J.B. Raoof, R. Ojani, M. Baghayeri, Sensitive voltammetric determination of captopril using a carbon paste electrode modified with Nano-TiO2/Ferrocene carboxylic acid. Chin. J. Catal. 32, 1685–1692 (2011)

    Article  CAS  Google Scholar 

  71. A.N. Golikanda, J. Raoof, M. Baghayeri, M. Asgari, L. Irannejad, Nickel Electrode modified by N,N-bis(salicylidene)phenylenediamine (Salophen) as a catalyst for methanol oxidation in alkaline medium. Russ. J. Electrochem. 45, 192–198 (2009)

    Article  Google Scholar 

  72. M. Baghayeri, H. Veisi, S. Farhadi, H. Beitollahi, B. Maleki, Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J. Iran. Chem. Soc. 15, 1015–1022 (2018)

    Article  CAS  Google Scholar 

  73. E.N. Zare, M.M. Lakouraj, M. Baghayeri, Electro-magnetic Polyfuran/Fe3O4 nanocomposite: synthesis, characterization, antioxidant activity, and its application as a Biosensor. Int. J. Polym. Mater. Polym. Biomater. 64, 175–183 (2014)

    Article  Google Scholar 

  74. A.L. Narayana, M. Dhananjaya, N.G. Prakash, O.M. Hussain, A. Mauger, C.M. Julien, Li2TiO3/Graphene and Li2TiO3/CNT composites as Anodes for high power li–ion batteries. ChemistrySelect 3, 9150–9158 (2018)

    Article  Google Scholar 

  75. T.F. Yi, S.Y. Yang, Y. Xie, Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithiumion batteries. J. Mater. Chem. A 3, 5750 (2015)

    Article  CAS  Google Scholar 

  76. A. Morais, G. Silveira, P.C.M. Villis, C.M. Maroneze, Y. Gushikem, F.L. Pissetti, A.M.S. Lucho, Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid. J. Solid State Electrochem. 16, 2957–2966 (2012)

    Article  CAS  Google Scholar 

  77. L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19, 2782–2789 (2009)

    Article  CAS  Google Scholar 

  78. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  79. A.S. Adekunle, B.O. Agboola, J. Pillay, K.I. Ozoemena, Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform. Sens. Actuators B-Chem. 148, 93–102 (2010)

    Article  CAS  Google Scholar 

  80. L. Cai, B. Hou, Y. Shang, L. Xu, B. Zhou, X. Jiang, X. Jiang, Synthesis of Fe3O4/graphene oxide/pristine graphene ternary composite and fabrication electrochemical sensor to detect dopamine and hydrogen peroxide. Chem. Phys. Lett. 736, 136797 (2019)

    Article  CAS  Google Scholar 

  81. A. Numan, M.M. Shahid, F.S. Omar, S. Rafique, S. Bashir, K. Ramesh, S. Ramesh, Binary nanocomposite based on Co3O4 nanocubes and multiwalled carbon nanotubes as an ultrasensitive platform for amperometric determination of dopamine. Microchim. Acta 184, 2739–2748 (2017)

    Article  CAS  Google Scholar 

  82. M.A. Kumar, V. Lakshminarayanan, S.S. Ramamurthy, Platinum nanoparticles-decorated graphene-modified glassy carbon electrode toward the electrochemical determination of ascorbic acid, dopamine, and paracetamol. C.R. Chimie 22, 58–72 (2019). https://doi.org/10.1016/j.crci.2018.09.015

    Article  CAS  Google Scholar 

  83. O. Gilbert, B.E.K. Swamy, U. Chandra, B.S. Sherigara, Simultaneous detection of dopamine and ascorbic acid using polyglycine modified carbon paste electrode: a cyclic voltammetric study. J. Electroanal. Chem. 636, 80–85 (2009)

    Article  CAS  Google Scholar 

  84. G. Venkataprasad, T.M. Reddy, P. Shaikshavali, P. Gopal, A novel electrochemical sensor based on multi-walled carbon nanotubes/poly (L-Methionine) for the investigation of 5-Nitroindazole: a voltammetric study. Anal. Chem. Lett. 8, 457–474 (2018). https://doi.org/10.1080/22297928.2018.1479304

    Article  CAS  Google Scholar 

  85. P. Shaikshavali, T.M. Reddy, V.N. Palakollu, R. Karpoormath, Y.S. Rao, G. Venkataprasad, T.V. Gopal, P. Gopal, Multi walled carbon nanotubes supported CuO-Au hybrid nanocomposite for the effective application towards the electrochemical determination of Acetaminophen and 4-Aminophenol. Synth. Met. 252, 29–39 (2019)

    Article  CAS  Google Scholar 

  86. G. Venkataprasad, T.M. Reddy, P. Shaikshavali, P. Gopal, P.V. Narayana, Electrochemical determination of 3,5-dinitrobenzoic acid in the presence and absence of CTAB at Multi-walled carbon nanotubes modified glassy carbon electrode: a voltammetric study. Anal. Bioanal. Electrochem. 9, 400–411 (2017)

    CAS  Google Scholar 

  87. R. Nurzulaikha, H.N. Lim, I. Harrison, S.S. Lim, A. Pandikumar, N.M. Huang, S.P. Lim, G.S.H. Thien, N. Yusoff, I. Ibrahim, Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine. Sens. Bio-Sens. Res. 5(5), 42–49 (2015)

    Article  Google Scholar 

  88. W. Sun, X. Wang, Y. Wang, X. Ju, G. Li Xu, Z. Li, Sun, Application of graphene–SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim. Acta 87, 317–322 (2013)

    Article  CAS  Google Scholar 

  89. D.A.C. Brownson, C.W. Foster, C.E. Banks, The electrochemical performance of graphene modified electrodes: an analytical perspective. Analyst 137, 1815 (2012)

    Article  CAS  PubMed  Google Scholar 

  90. G.P. Keeley, N. McEvoy, H. Nolan, S. Kumar, E. Rezvani, M. Holzinger, S. Cosnier, G.S. Duesberg, Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Anal. Methods 4, 2048–2053 (2012)

    Article  CAS  Google Scholar 

  91. Y. Fan, H.T. Lu, J.H. Liu, C.P. Yang, Q.S. Jing, Y.X. Zhang, X.K. Yang, K.J. Huang, Hydrothermal preparation, and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids Surf. B: Biointerfaces 83, 78–82 (2011)

    Article  CAS  PubMed  Google Scholar 

  92. G.T.S. How, A. Pandikumar, H.N. Ming, L.H. Ngee, Highly exposed 001 facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci. Rep. 4, 5044 (2014). https://doi.org/10.1038/srep05044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. G. Fabregat, E. Armelin, C. Aleman, Selective detection of dopamine combining multilayers of conducting polymers with gold nanoparticles. J. Phys. Chem. B 118, 4669–4682 (2014)

    Article  CAS  PubMed  Google Scholar 

  94. D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 22, 2001–2008 (2010)

    Article  CAS  Google Scholar 

  95. B. Kaur, T. Pandiyan, B. Satpati, R. Srivastava, Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf. B: Biointerfaces 111, 97–106 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. T.K. Aparna, R. Sivasubramanian, One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J. Alloys Comp. 741, 1130–1141 (2018)

    Article  CAS  Google Scholar 

  97. A.L. Narayana, G. Venkataprasad, S. Praveen, C.W. Ho, H.K. Kim, T.M. Reddy, C.M. Julien, C.W. Lee, Li2TiO3-MWCNT nanocomposite electrodes for determination of dopamine in electrochemical sensing platform. Sens. Actuators: Phys. 341, 113555 (2022)

    Article  CAS  Google Scholar 

  98. G. Venkataprasad, T.M. Reddy, A.L. Narayana, O.M. Hussain, P. Shaikshavali, T.V. Gopal, P. Gopal, A facile synthesis of Fe3O4-Gr nanocomposite and its effective use as electrochemical sensor for the determination of dopamine and as anode material in lithium-ion batteries. Sens. Actuators A-Phy. 293, 87–100 (2019)

    Article  CAS  Google Scholar 

  99. D. Kong, W. Ren, Y. Luo, Y. Yang, C. Cheng, Scalable synthesis of graphene-wrapped Li4Ti5O12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long cycle life. J. Mater. Chem. A 2, 20221 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, G. Venkata Prasad greatly acknowledges the University Grants Commission (UGC) for providing financial support through Basic scientific research (UGC-BSR-SRF, Beneficiary code-BININ00355271) fellowship for meritorious students.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

GVP : Investigation, Formal analysis, Validation, Writing -original draft, Visualization. TMR: Conceptualization, Methodology, Project administration, Supervision, Validation, Writing—review & editing. ALN: Formal analysis, Validation. OMH: Conceptualization, Methodology, Supervision, Validation, Writing—review & editing. TVG: Formal analysis, Validation. PS: Formal analysis, Validation.

Corresponding author

Correspondence to Tukiakula Madhusudana Reddy.

Ethics declarations

Competing interests

This article has not been published elsewhere in whole or in part. All authors have read and approved the content, and agree to submit for consideration for publication in the journal. There are no any ethical/legal conflicts involved in the article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, G.V., Reddy, T.M., Narayana, A.L. et al. Construction of the Embedded Li4Ti5O12-MWCNTs Nanocomposite Electrode for Diverse Applications in Electrochemical Sensing and Rechargeable Battery. J Inorg Organomet Polym 33, 1261–1279 (2023). https://doi.org/10.1007/s10904-023-02584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02584-1

Keywords

Navigation