Skip to main content
Log in

Constructing of Novel Cu2AlSnS4 (CATS) Compound: Synthesis, Chracterization and Photocatalytic Activities Approach

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Cu2AlSnS4 (CATS) was generated through directly fusing of extremely pure elements. Powder show a tetragonal crystal system belongs to the space group Fd3m and the CATS film displays narrow and weak diffraction peaks corresponding to the structure of pure kesterite without secondary phase. CATS thin films were produced using the vacuum thermal evaporation process and then deposited to surfaces that ranged in temperature from 25 to 300 °C. Several techniques were used to investigate the obtained films. The surface appearance and chemical content films exposed their homogenous character. The optical analysis displayed good visible-range optical absorption and optical direct band gap of 1.30–1.65 eV with excellent transmission. CATS showed high photocatalytic efficacy to degrade methylene blue completely under UV-light irradiation. These results will open the opportunity for using this new material as talented candidate in solar cells and removing organic pollutants from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Rahman, M. Bashar, N. Islam, Optical and structural study of the CZTS thin film for solar cell derived from the chloride-based sol–gel precursor solution. Dhaka Univ. J. Sci. 70(1), 1–7 (2022)

    Article  Google Scholar 

  2. Y.M. Zhang, Z.J. Jia, Z.Y. Zhao, Secondary phases in Cu2ZnSnS4 thin film solar cell: the role of interfaces. Phys. B: Condens. Matter. 626, 413539 (2022)

    Article  CAS  Google Scholar 

  3. H. Katagiri, N. Ishigaki, T. Ishida, Characterization of Cu2ZnSnS4 thin films prepared by vapour phase sulfurization. Jpn. J. Appl. Phys. 40, 500–504 (2001)

    Article  CAS  Google Scholar 

  4. J.S. Seol, S.Y. Lee, J.C. Lee, H.D. Nam, K.H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)

    Article  CAS  Google Scholar 

  5. S. Mazumder, K. Senthilkumar, Device study and optimisation of CZTS/ZnS based solar cell with CuI hole transport layer for different conduction band offset. Sol. Energy 237, 414–431 (2022)

    Article  CAS  Google Scholar 

  6. T. Todorov, D. Mitzi, IBM. Shedding light on new frontiers of solar cell semiconductors, Retrieved 22 August (2012)

  7. F. Ozel, Earth-abundant quaternary semiconductor Cu2MSnS4 (M = Fe, Co, Ni and Mn) nanofibers: fabrication, characterization and band gap arrangement. J. Alloy. Compd. 657, 157 (2016)

    Article  CAS  Google Scholar 

  8. H. Guan, H. Shen, B. Jiao, X. Wang, Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Mater. Sci. Semicond. Process 25, 159 (2013)

    Article  Google Scholar 

  9. X. Meng, H. Deng, L. Sun, P. Yang, J. Chu, Synthesis, structure, optics and electrical properties of Cu2FeSnS4 thin film by sputtering metallic precursor combined with rapid thermal annealing sulfurization process. Mater. Lett. 161, 427 (2015)

    Article  CAS  Google Scholar 

  10. M. Cao, C. Li, B. Zhang, J. Huang, L. Wang, Y. Shen, PVP assisted solvothermal synthesis of uniform Cu2FeSnS4 nanospheres. J. Alloy. Compd. 622, 695–702 (2015)

    Article  CAS  Google Scholar 

  11. K. Mokurala, P. Bhargava, S. Mallick, Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors. Mater. Chem. Phys. 147, 371–374 (2014)

    Article  CAS  Google Scholar 

  12. C. Yan et al., Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals. Chem. Commun. 48, 2603–2605 (2012)

    Article  CAS  Google Scholar 

  13. R.R. Prabhakar et al., Facile water-based spray pyrolysis of earth-abundant Cu2FeSnS4 thin films as an efficient counter electrode in dyesensitized solar cells. ACS Appl. Mater. Interfaces 6, 17661–17667 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method. Sol. Energy Mater. Sol. Cells 95, 2907–2913 (2011)

    Article  CAS  Google Scholar 

  15. S. Dridi, N. Bitri, S. Mahjoubi et al., One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications. J. Mater. Sci.: Mater. Electron. 31, 7193–7199 (2020)

    CAS  Google Scholar 

  16. S. Mahjoubi, N. Bitri, H. Bouzouita et al., Effect of the annealing and the spraying time on the properties of CZTS thin films prepared by the “Spray sandwich” technique. Appl. Phys. A 123, 452 (2017)

    Article  Google Scholar 

  17. A. Timoumi, H. Bouzouita, M. Kanzari, B. Rezig, Fabrication and characterization of in thin films deposited by thermal evaporation technique. Thin Solid Films 480, 124–128 (2005)

    Article  Google Scholar 

  18. A. Timoumi, H. Bouzouita, B. Rezig, Optical constants of Na–In thin films prepared by vacuum thermal evaporation technique. Thin Solid Films 519(21), 7615–7619 (2011)

    Article  CAS  Google Scholar 

  19. A. Alsulamei et al., Tailoring the physical and optical properties of Sn-doped in thin films obtained using VTE technique. Opt. Mater. X 15, 100176 (2022)

    CAS  Google Scholar 

  20. E. Alamoudi et al., The synthesis and the effect of Cu on optoelectronic qualities of β-In2S3 as a window layer for CIGS thin film solar cells. Res. Phys. 40, 105858 (2022)

    Google Scholar 

  21. A. Timoumi, M.A. Wederni, N. Bouguila, B. Jamoussi, M.K. ALTurkestani, R. Chakroun, B. Al-Mur, Electrical impedance spectroscopy study of unsubstituted palladium (II) phthalocyanine. Synth. Met. 272, 116659 (2021)

    Article  CAS  Google Scholar 

  22. A. Timoumi, W. Zayoud, A. Sharma et al., Impact of thermal annealing inducing oxidation process on the crystalline powder of In2S3. J. Mater. Sci.: Mater. Electron. 31, 13636–13645 (2020)

    CAS  Google Scholar 

  23. C. Nefzi, B. Askri, B. Yahmadi, N. El Guesmi, J.M. García, N. Kamoun-Turki, S.A. Ahmed, Competence of tunable Cu2AlSnS4 chalcogenides hydrophilicity toward high efficacy photodegradation of spiramycin antibiotic resistance-bacteria from wastewater under visible light irradiation. J. Photochem. Photobiol. A: Chem. 431, 114041 (2022)

    Article  CAS  Google Scholar 

  24. S. Ruzgar, S.A. Pehlivanoglu, The effect of Fe dopant on structural, optical properties of TiO thin films and electrical performance of TiO2 based photodiode. Superlattices Microstruct. 145, 106636 (2020)

    Article  CAS  Google Scholar 

  25. S. Rondiya, A. Rokade, A. Jadhavar, S. Nair, M. Chaudhari, R. Kulkarni, A. Mayabadi, A. Funde, H. Pathan, S. Jadkar, Mater. Renew. Sustain. Energy 6, 8 (2017)

    Article  Google Scholar 

  26. A. Timoumi, B. Tiss, W. Zayoud, A. Sharma, M. Kraini, N. Bouguila, C. Moura, The effects of annealing process on the characteristics of β-In powder in pellet form. Mat. Sci. Semicond. Process. 148, 106–717 (2022)

    Article  Google Scholar 

  27. A. Timoumi, H.M. Albetran, H.R. Alamri, S.N. Alamri, I.M. Low, Impact of annealing temperature on structural, morphological and optical properties of GO-TiO2 thin films prepared by spin coating technique. Superlattice Microst. 139, 106423 (2020)

    Article  CAS  Google Scholar 

  28. N. Bouguila et al., Molar ratio S/In effect on properties of sprayed In2S3 films. Eur. Phys. J. Appl. Phys. 63(2), 20301 (2013)

    Article  Google Scholar 

  29. A. Timoumi, H. Bouzouita, Thickness dependent physical properties of evaporated In2S3 films for photovoltaic application. Int. J. Renew. Energy Technol. Res. 2(7), 188–195 (2013)

    Google Scholar 

  30. A. Timoumi, Reduction band gap energy of TiO2 assembled with graphene oxide nanosheets. Graphene 7(4), 31–38 (2018)

    Article  CAS  Google Scholar 

  31. A. Timoumi, M.K.A.L. Turkestani, S.N. Alamri, H. Alamri, J. Ouerfelli, B. Jamoussi, Synthesis and characterization of thin films of palladium (II) phthalocyanine and its derivatives using the thermal evaporation technique. J. Mater. Sci.: Mater. Electron. 27, 7480–7488 (2017)

    Google Scholar 

  32. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ. 31, 145–157 (2001)

    Article  CAS  Google Scholar 

  33. M.A. Abu-Dalo, S.A. Al-Rosan, B.A. Albiss, Photocatalytic degradation of methylene blue using polymeric membranes based on cellulose acetate impregnated with ZnO nanostructures. Polymers 13, 3451 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino, A. Gulino, M.V. Brundo, V. Privitera, G. Impellizzeri, Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Sci. Rep. 7, 40895 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  35. V. Eskizeybek, F. Sarı, H. Gülce, A. Gülce, A. Avcı, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B Environ. 119–120, 197–206 (2012)

    Article  Google Scholar 

  36. Z.A. Che Ramli, N. Asim, W.N.R.W. Isahak, Z. Emdadi, N. Ahmad-Ludin, M.A. Yarmo, K. Sopian, Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. Sci. World J. (2014). https://doi.org/10.1155/2014/415136

    Article  Google Scholar 

  37. Z. Othman, A. Sinopoli, H.R. Mackey, K.A. Mahmoud, Efficient photocatalytic degradation of organic dyes by AgNPs/TiO2/Ti3C2Tx MXene composites under UV and solar light. ACS Omega 6, 33325–33338 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Li, Y. Zeng, T. Huang, L. Piao, Z. Yan, M. Liu, Hierarchical TiO2 nanospheres with dominant {001} facets: facile synthesis, growth mechanism, and photocatalytic activity. Chem. Eur. J. 18, 7525–7532 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. H. Atout, M.G. Álvarez, D. Chebli, A. Bouguettoucha, D. Tichit, J. Llorca, F. Medina, Enhanced photocatalytic degradation of methylene blue: preparation of TiO2/reduced graphene oxide nanocomposites by direct sol–gel and hydrothermal methods. Mater. Res. Bull. 95, 578–587 (2017)

    Article  CAS  Google Scholar 

  40. V.B. Koli, S. Mavengere, J.-S. Kim, Boron-doped TiO2–CNTs nanocomposites for photocatalytic application. J. Mater. Sci.: Mater. Electron. 29, 16660–16672 (2018)

    CAS  Google Scholar 

  41. A. Gangadhar, A.M. Ramesh, J. Krishnegowda, S. Shivanna, Photo-catalytic dye degradation of methylene blue by using ZrO2/MWCNT nanocomposites. Water Pract. Technol. 16, 1265–1276 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4331172DSR01).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AT: Investigation, Supervision, Data curation, Methodology, draft preparation, Writing—review & editing. NEG: Investigation, Methodology, Data curation, Writing—review & editing. SNA: Investigation, Data curation. OHA: Investigation, Supervision. SAA: Investigation, Methodology, Writing— review & editing.

Corresponding authors

Correspondence to A. Timoumi or N. El Guesmi.

Ethics declarations

Conflict of interest

The authors declare that they are no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoumi, A., El Guesmi, N., Alamri, S.N. et al. Constructing of Novel Cu2AlSnS4 (CATS) Compound: Synthesis, Chracterization and Photocatalytic Activities Approach. J Inorg Organomet Polym 33, 1592–1602 (2023). https://doi.org/10.1007/s10904-023-02582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02582-3

Keywords

Navigation