Skip to main content

Advertisement

Log in

Synthesis and Characterization of Composite Film Based on Cellulose of Napier Grass Incorporated with Chitosan and Gelatine for Packaging Material

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Mitigating environmental pollution, which adversely affects humans, wildlife, and habitat, has been attracting increasing attention worldwide, especially with reference to the importance of using composite films. In this study, composite films consisting of cellulose, chitosan, and gelatine were analysed and characterized. It was fabricated via a solution casting method. The cellulose extracted from the whole stem, cortex, and pith of Napier grass with 4, 8, 12, and 16% alkali concentrations were used to produce the composite films. Based on the thermogravimetric analysis, mechanical analysis, Fourier-transform infrared spectroscopy (FTIR) analysis, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) observation, it was confirmed that the interaction of cellulose of Napier grass, chitosan and gelatine had improve the thermal behaviour, strength, composition, crystallinity, and morphology of composite films. The composite films using 8% alkali-treated cellulose from the whole stem had an ordered structure with 2θ = 22.68°. Furthermore, it contained the highest final residue (74.85%) and tensile strength of 4.58 ± 0.373 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Chaudhary, F. Fatima, A. Kumar, Relevance of nanomaterials in food packaging and its advanced future prospects. J. Inorg. Organomet. Polym. Mater. 30, 5180–5192 (2020). https://doi.org/10.1007/s10904-020-01674-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. Mamatha, P. Sowmya, D. Madhuri, N. Mohan Babu, D. Suresh Kumar, G. Vijaya Charan, K. Varaprasad, K. Madhukar, Antimicrobial cellulose nanocomposite films with in situ generations of bimetallic (Ag and Cu) nanoparticles using Vitex negundo leaves extract. J. Inorg. Organomet. Polym. Mater. 31, 802–815 (2021). https://doi.org/10.1007/s10904-020-01819-9

    Article  CAS  Google Scholar 

  3. J. Lucenius, K. Parikka, M. Österberg, Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React. Funct. Polym. 85, 167–174 (2014). https://doi.org/10.1016/j.reactfunctpolym.2014.08.001

    Article  CAS  Google Scholar 

  4. G. Zhao, X. Lyu, J. Lee, X. Cui, W.-N. Chen, Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packag. Shelf Life 21, 100345 (2019). https://doi.org/10.1016/J.FPSL.2019.100345

    Article  Google Scholar 

  5. E. Kabir, R. Kaur, J. Lee, K.H. Kim, E.E. Kwon, Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.120536

    Article  Google Scholar 

  6. H. Haghighi, F. Licciardello, P. Fava, H.W. Siesler, A. Pulvirenti, Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag. Shelf Life 26, 100551 (2020). https://doi.org/10.1016/j.fpsl.2020.100551

    Article  Google Scholar 

  7. R. Ning, M. Takeuchi, J.M. Lin, T. Saito, A. Isogai, Influence of the morphology of zinc oxide nanoparticles on the properties of zinc oxide/nanocellulose composite films. React. Funct. Polym. 131, 293–298 (2018). https://doi.org/10.1016/j.reactfunctpolym.2018.08.005

    Article  CAS  Google Scholar 

  8. S. Kumar, P. Singh, S.K. Gupta, J. Ali, S. Baboota, Biodegradable and recyclable packaging materials: a step towards a greener future, in: Encyclopedia of Renewable and Sustainable Materials (Elsevier, Amsterdam, 2020), pp. 328–337. https://doi.org/10.1016/b978-0-12-803581-8.10934-8

  9. I.S. Jahit, N.N.M. Nazmi, M.I.N. Isa, N.M. Sarbon, Preparation and physical properties of gelatin/CMC/chitosan composite films as affected by drying temperature. Int. Food Res. J. 23(23), 1068–1074 (2016)

    CAS  Google Scholar 

  10. C. Sharma, N.K. Bhardwaj, P. Pathak, Ternary nano-biocomposite films using synergistic combination of bacterial cellulose with chitosan and gelatin for tissue engineering applications. J. Biomater. Sci. Polym. Ed. 32, 166–188 (2021). https://doi.org/10.1080/09205063.2020.1822122

    Article  CAS  PubMed  Google Scholar 

  11. M. Abdelraof, M.M. Farag, Z.M. Al-Rashidy, H.Y.A. Ahmed, H. El-Saied, M.S. Hasanin, Green synthesis of bioactive hydroxyapatite/cellulose composites from food industrial wastes. J. Inorg. Organomet. Polym. Mater. 32, 4614–4626 (2022). https://doi.org/10.1007/s10904-022-02462-2

    Article  CAS  Google Scholar 

  12. B. Rohmawati, F.A. Nata Sya’idah, R. Rhismayanti, D. Alighiri, W. Tirza Eden, Synthesis of bioplastic-based renewable cellulose acetate from teak wood (Tectona grandis) biowaste using glycerol-chitosan plasticizer. Orient. J. Chem. 34, 1810–1816 (2018)

    Article  CAS  Google Scholar 

  13. A.M. Mansor, J. Shiun Lim, F.N. Ani, H. Hashim, W. Shin Ho, Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chem. Eng. Trans. 72, 79–84 (2019). https://doi.org/10.3303/CET1972014

    Article  Google Scholar 

  14. S. Rasila, A.M. Rasli, I. Ahmad, A.M. Lazim, A. Hamzah, Extraction and characterization of cellulose from agricultural residue-oil palm fronds. Malaysian J. Anal. Sci. 21, 1065–1073 (2017)

    Google Scholar 

  15. P. Penjumras, R.B.A. Rahman, R.A. Talib, K. Abdan, Extraction and characterization of cellulose from durian rind. Agric. Agric. Sci. Procedia 2, 237–243 (2014). https://doi.org/10.1016/j.aaspro.2014.11.034

    Article  Google Scholar 

  16. C.A.O. Midega, J.O. Pittchar, J.A. Pickett, G.W. Hailu, Z.R. Khan, A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot. 105, 10–15 (2018). https://doi.org/10.1016/j.cropro.2017.11.003

    Article  Google Scholar 

  17. H. Izadi-Vasafi, F. Ghayoumi, S. Karbasizadeh-Esfahani, M. Ghafghazi, Comparing the effect of sodium-based and calcium-based crosslinkers on the swelling, mechanical and rheological properties of chitosan/gelatin/starch films. J. Macromol. Sci. Part B Phys. 59, 331–343 (2020). https://doi.org/10.1080/00222348.2020.1714854

    Article  CAS  Google Scholar 

  18. S. Kumar, A. Shukla, P.P. Baul, A. Mitra, D. Halder, Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life 16, 178–184 (2018). https://doi.org/10.1016/j.fpsl.2018.03.008

    Article  Google Scholar 

  19. T.S.M. Kumar, N. Rajini, K. Obi Reddy, A. Varada Rajulu, S. Siengchin, N. Ayrilmis, All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int. J. Biol. Macromol. 112, 1310–1315 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.167

    Article  CAS  Google Scholar 

  20. T.N.T. Rohadi, M.J.M. Ridzuan, M.S.A. Majid, A. Khasri, M.H. Sulaiman, Isolation and characterisation of cellulose from cortex, pith and whole of the Pennisetum purpureum: effect of sodium hydroxide concentration. J. Mater. Res. Technol. 9, 15057–15071 (2020). https://doi.org/10.1016/j.jmrt.2020.10.102

    Article  CAS  Google Scholar 

  21. A.T. Mart, A. Gutie, Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J. Agric. Food Chem. 60, 3619–3634 (2012). https://doi.org/10.1021/jf300099g

    Article  CAS  Google Scholar 

  22. S.T. Cholake, R. Rajarao, P. Henderson, R.R. Rajagopal, V. Sahajwalla, Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J. Clean. Prod. 151, 163–171 (2017). https://doi.org/10.1016/j.jclepro.2017.03.074

    Article  Google Scholar 

  23. ASTM D882-02, Standard Test Method for Tensile Properties of Thin Plastic Sheeting. West Conshohocken, 2002. https://doi.org/10.1520/D0882-02

  24. A.D. French, Increment in evolution of cellulose crystallinity analysis. Cellulose 27, 5445–5448 (2020). https://doi.org/10.1007/s10570-020-03172-z

    Article  Google Scholar 

  25. A.D. French, M. Santiago Cintrón, Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20, 583–588 (2013). https://doi.org/10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  26. N. Ramakrishnan, S. Sharma, A. Gupta, B.Y. Alashwal, Keratin based bioplastic film from chicken feathers and its characterization. Int. J. Biol. Macromol. 111, 352–358 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.037

    Article  CAS  PubMed  Google Scholar 

  27. M.R. Amin, M.A. Chowdhury, M.A. Kowser, Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon 5, e02009 (2019). https://doi.org/10.1016/j.heliyon.2019.e02009

    Article  PubMed  PubMed Central  Google Scholar 

  28. S.C. Koay, V. Subramanian, M.Y. Chan, M.M. Pang, K.Y. Tsai, K.H. Cheah, Preparation and characterization of wood plastic composite made up of durian husk fiber and recycled polystyrene foam. MATEC Web Conf. 152, 02019 (2018). https://doi.org/10.1051/matecconf/201815202019

    Article  CAS  Google Scholar 

  29. V. Bátori, M. Jabbari, D. Åkesson, P.R. Lennartsson, M.J. Taherzadeh, A. Zamani, Production of pectin-cellulose biofilms: a new approach for citrus waste recycling. Int. J. Polym. Sci. (2017). https://doi.org/10.1155/2017/9732329

    Article  Google Scholar 

  30. R.F. Santana, R.C.F. Bonomo, O.R.R. Gandolfi, L.B. Rodrigues, L.S. Santos, A.C. Dos Santos Pires, C.M. Veloso, Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. J. Food Sci. Technol. 55, 278–286 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. A.S. Giwa, H. Xu, J. Wu, Y. Li, F. Chang, X. Zhang, Z. Jin, B. Huang, K. Wang, Sustainable recycling of residues from the food waste (FW) composting plant via pyrolysis: thermal characterization and kinetic studies. J. Clean. Prod. 180, 43–49 (2018). https://doi.org/10.1016/j.jclepro.2018.01.122

    Article  CAS  Google Scholar 

  32. M. Lubis, M. Bangun Harahap, M. Hendra, S. Ginting, M. Sartika, H. Azmi, Production of bioplastic from avocado seed starch reinforced with microcrystalline cellulose from sugar palm fibers. J. Eng. Sci. Technol. 13, 381–393 (2018)

    Google Scholar 

  33. A. Muhammad, A. Roslan, S.N.A. Sanusi, M.Q. Shahimi, N.Z. Nazari, Mechanical properties of bioplastic form cellulose nanocrystal (CNC) mangosteen peel using glycerol as plasticizer. J. Phys. Conf. Ser. 1349, 12099 (2019). https://doi.org/10.1088/1742-6596/1349/1/012099

    Article  CAS  Google Scholar 

  34. M.J.M. Ridzuan, M.S. Abdul Majid, A. Khasri, K.S. Basaruddin, A.G. Gibson, Effect of moisture exposure and elevated temperatures on impact response of Pennisetum purpureum/glass-reinforced epoxy (PGRE) hybrid composites. Compos. Part B Eng. 160, 84–93 (2019). https://doi.org/10.1016/j.compositesb.2018.10.029

    Article  CAS  Google Scholar 

  35. Isroi, A. Cifriadi, T. Panji, N.A. Wibowo, K. Syamsu, 2017. Bioplastic production from cellulose of oil palm empty fruit bunch, in: IOP Conf. Ser. Earth Environ. Sci. 65, 012011. https://doi.org/10.1088/1755-1315/65/1/012011

  36. M.K. Marichelvam, M. Jawaid, M. Asim, Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7, 32 (2019). https://doi.org/10.3390/fib7040032

    Article  CAS  Google Scholar 

  37. H. Hermansyah, R. Carissa, M.B. Faiz, P. Deni, Food grade bioplastic based on corn starch with banana pseudostem fibre/bacterial cellulose hybrid filler. Front. Chem. Eng. Metall. Eng. Mater. III 997, 158–168 (2014). https://doi.org/10.4028/www.scientific.net/AMR.997.158

    Article  CAS  Google Scholar 

  38. R. Gurram, P.F. Souza Filho, M.J. Taherzadeh, A. Zamani, A solvent-free approach for production of films from pectin and fungal biomass. J. Polym. Environ. 26, 4282–4292 (2018). https://doi.org/10.1007/s10924-018-1300-x

    Article  CAS  Google Scholar 

  39. N.A. Ismail, S. Mohd Tahir, N. Yahya, M.F. Abdul Wahid, N.E. Khairuddin, I. Hashim, N. Rosli, M.A. Abdullah, Synthesis and characterization of biodegradable starch-based bioplastics. Mater. Sci. Forum 846, 673–678 (2016)

    Article  Google Scholar 

  40. M.C. Etty, S. D’Auria, S. Shankar, S. Salmieri, J. Coutu, A. Baraketi, M. Jamshidan, C. Fraschini, M. Lacroix, New immobilization method of anti-PepD monoclonal antibodies for the detection of Listeria monocytogenes p60 protein—Part a: optimization of a crosslinked film support based on chitosan and cellulose nanocrystals (CNC). React. Funct. Polym. 146, 104313 (2020). https://doi.org/10.1016/j.reactfunctpolym.2019.06.021

    Article  CAS  Google Scholar 

  41. M.M. Siagian, P. Tarigan, Production of starch based bioplastic from cassava peel reinforced with microcrystalline celllulose avicel PH101 using sorbitol as plasticizer. J. Phys. Conf. Ser. (2016). https://doi.org/10.1088/1742-6596/710/1/012012

    Article  Google Scholar 

  42. M. Prochoń, A. Marzec, B. Szadkowski, Preparation and characterization of new environmentally friendly starch-cellulose materials modified with casein or gelatin for agricultural applications. Materials (Basel). 12, 1684 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  43. X. Xu, J. Yu, C. Liu, G. Yang, L. Shi, X. Zhuang, Xanthated chitosan/cellulose sponges for the efficient removal of anionic and cationic dyes. React. Funct. Polym. 160, 104840 (2021). https://doi.org/10.1016/j.reactfunctpolym.2021.104840

    Article  CAS  Google Scholar 

  44. N.Johnsson, F. Steuer, Bioplastic material from microalgae extraction of starch and PHA from microalgae to create a bioplastic material, Degree Project Technology, 2018.

  45. B. Jiang, S. Li, Y. Wu, J. Song, S. Chen, X. Li, H. Sun, Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CyTA-Journal Food 16, 1045–1054 (2018). https://doi.org/10.1080/19476337.2018.1527783

    Article  CAS  Google Scholar 

  46. A.D. French, Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21, 885–896 (2014). https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  47. B.Y. Alashwal, M. Saad Bala, A. Gupta, S. Sharma, P. Mishra, Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: a comparative analysis. J. King Saud Univ. Sci. 32, 853–857 (2020). https://doi.org/10.1016/j.jksus.2019.03.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciatively thank the Universiti Malaysia Perlis (UniMAP), Universiti Teknologi Mara (UiTM) Shah Alam, and International Islamic University Malaysia (IIUM) for the support of their facility in conducting this research.

Funding

This work was supported by the Ministry of Education, Malaysia through the Fundamental Research Grant Scheme (Ref: FRGS/1/2020/TK0/UNIMAP/02/18).

Author information

Authors and Affiliations

Authors

Contributions

MJMR, TNTR and MSAM designed the entire story in this manuscript, performed all tests and data analysis. AA, FM, SMS were designed and revised the manuscript. All authors discussed the methods, results and checked the manuscripts.

Corresponding author

Correspondence to M. J. M. Ridzuan.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohadi, T.N.T., Ridzuan, M.J.M., Majid, M.S.A. et al. Synthesis and Characterization of Composite Film Based on Cellulose of Napier Grass Incorporated with Chitosan and Gelatine for Packaging Material. J Inorg Organomet Polym 33, 1134–1146 (2023). https://doi.org/10.1007/s10904-023-02563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02563-6

Keywords

Navigation