Skip to main content
Log in

Experimental Investigation on Mechanical, Thermal, Viscoelastic, Water Absorption, and Biodegradability Behavior of Sansevieria Ehrenbergii Fiber Reinforced Novel Polymeric Composite with the Addition of Coconut Shell Ash Powder

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of addition of carbonized coconut shell powder on the mechanical properties, biodegradability, thermal conductivity, thermal diffusivity, and water absorption properties of Snake Grass Fiber (SGF)/epoxy composites. The hand layup method was employed to produce the samples, and a 40 wt% of SGF with 30 mm optimum length reinforced with epoxy resin is taken as base material. In addition, Coconut Shell Ash (CSA) powder was used as the filler varying from 2.5 to 10 wt%. The results show that mechanical characteristics, such as tensile and flexural strength, are enhanced with the addition of CSA up to 5 wt%, and then the phenomenon has been changed. However, the impact and hardness values increased with an increase in the CSA filler content up to 10 wt%. Thermogravimetric analysis studies have reported that 10 wt% of CSA addition shows a maximum char yield of 16.56%. The biodegradability of the composite was proportional to the amount of CSA reinforcement. Meanwhile, composites shows reduced thermal conductivity with the addition of CSA. Since, the thermal diffusivity increased with the addition of CSA. Scanning electron microscope analysis was performed to identify the reason for the decrease in the mechanical properties of the specimens (beyond 5 wt% of CSA addition) through failure mode analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Ramesh, C. Deepa, L. Rajeshkumar, M. Tamil Selvan, D. Balaji, Influence of fiber surface treatment on the tribological properties of Calotropis gigantea plant fiber reinforced polymer composites. Polym. Compos. 42(9), 4308–4317 (2021). https://doi.org/10.1002/pc.26149

    Article  CAS  Google Scholar 

  2. G. Ekundayo, Reviewing the development of natural fiber polymer composite: a case study of sisal and jute. Am. J. Mech. Mater. Eng. 3, 1 (2019). https://doi.org/10.11648/j.ajmme.20190301.11

    Article  Google Scholar 

  3. M. Ramesh, C. Deepa, M.T. Selvan, L. Rajeshkumar, D. Balaji, V. Bhuvaneswari, Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites. Mater. Today Proc. 46, 3367–3372 (2021). https://doi.org/10.1016/j.matpr.2020.11.480

    Article  CAS  Google Scholar 

  4. M. Ramesh, L. Rajeshkumar, C. Deepa, M. Tamil Selvan, V. Kushvaha, M. Asrofi, Impact of silane treatment on characterization of ipomoea staphylina plant fiber reinforced epoxy composites. J. Nat. Fibers 2021, 1–12 (2021). https://doi.org/10.1080/15440478.2021.1902896

    Article  CAS  Google Scholar 

  5. S. Indran, R. Edwin Raj, V.S. Sreenivasan, Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 110, 423–429 (2014). https://doi.org/10.1016/j.carbpol.2014.04.051

    Article  CAS  PubMed  Google Scholar 

  6. S. Indran, R.E. Raj, Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 117, 392–399 (2015). https://doi.org/10.1016/j.carbpol.2014.09.072

    Article  CAS  PubMed  Google Scholar 

  7. M. Ramesh, C. Deepa, M. Tamil Selvan, K.H. Reddy, Effect of alkalization on characterization of ripe bulrush (Typha Domingensis) grass fiber reinforced epoxy composites. J. Nat. Fibers 19(3), 931–942 (2022). https://doi.org/10.1080/15440478.2020.1764443

    Article  CAS  Google Scholar 

  8. M. Ramesh, M. Tamil Selvan, L. Rajeshkumar, C. Deepa, A. Ahmad, Influence of Vachellia nilotica Subsp. indica tree trunk bark nano-powder on properties of milkweed plant fiber reinforced epoxy composites. J. Nat. Fibers 19, 1–14 (2022). https://doi.org/10.1080/15440478.2022.2106341

    Article  CAS  Google Scholar 

  9. A. Felix Sahayaraj, I. Jenish, M. Tamilselvan, M. Muthukrishnan, B. Ashok Kumar, Mechanical and morphological characterization of sisal/kenaf/pineapple mat reinforced hybrid composites. Int. Polym. Process. 37, 581–588 (2022). https://doi.org/10.1515/ipp-2022-4238

    Article  CAS  Google Scholar 

  10. T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Compos. Sci. Technol. 72, 1183–1190 (2012). https://doi.org/10.1016/j.compscitech.2012.04.001

    Article  CAS  Google Scholar 

  11. V.S. Sreenivasan, D. Ravindran, V. Manikandan, R. Narayanasamy, Mechanical properties of randomly oriented short Sansevieria cylindrica fibre/polyester composites. Mater. Des. 32, 2444–2455 (2011). https://doi.org/10.1016/j.matdes.2010.11.042

    Article  CAS  Google Scholar 

  12. G.V. Vigneshwaran, I. Jenish, R. Sivasubramanian, Design, fabrication and experimental analysis of pandanus fibre reinforced polyester composite. Adv. Mater. Res. 984, 253–256 (2014)

    Article  Google Scholar 

  13. S. Indran, R.D. Edwin Raj, B.S.S. Daniel, J.S. Binoj, Comprehensive characterization of natural Cissus quadrangularis stem fiber composites as an alternate for conventional FRP composites. J. Bion. Eng. 15, 914–923 (2018). https://doi.org/10.1007/s42235-018-0078-9

    Article  Google Scholar 

  14. R. Prabhu, M.P. Rahul, A. Aeilias, B. Sunny, J. Alok, T. Bhat, Investigation of tribological property of coconut shell powder filled epoxy glass. Composites 7, 174–184 (2017). https://doi.org/10.5923/j.materials.20170705.10

    Article  Google Scholar 

  15. I. Jenish, S.G. Veeramalai Chinnasamy, S. Basavarajappa, S. Indran, D. Divya, Y. Liu et al., Tribo-mechanical characterization of carbonized coconut shell micro particle reinforced with Cissus quadrangularis stem fiber/epoxy novel composite for structural application. J. Nat. Fibers 00, 1–17 (2020). https://doi.org/10.1080/15440478.2020.1838988

    Article  CAS  Google Scholar 

  16. G.D. Vilakati, A.K. Mishra, S.B. Mishra, B.B. Mamba, J.M. Thwala, Influence of TiO2-modification on the mechanical and thermal properties of sugarcane bagasse–EVA composites. J. Inorg. Organomet. Polym. Mater. 20(4), 802–808 (2010)

    Article  CAS  Google Scholar 

  17. W. Zhao, H. Chen, Y. Fan, W. Cui, Effect of size and content of SiO2 nanoparticle on corona resistance of silicon-boron composite oxide/SiO2/epoxy composite. J. Inorg. Organomet. Polym. Mater. 30(11), 4753–4763 (2020)

    Article  CAS  Google Scholar 

  18. A. Obeid, M. Roumie, M.S. Badawi, R. Awad, Evaluation of the effect of different nano-size of WO3 on the structural and mechanical properties of HDPE. J. Inorg. Organomet. Polym. Mater. 32(4), 1506–1519 (2022)

    Article  CAS  Google Scholar 

  19. I. Jenish, V.C.S. Gandhi, R.E. Raj, S. Basavarajappa, S. Indran, D. Divya et al., A new study on tribological performance of Cissus quadrangularis stem fiber/epoxy with red mud filler composite. J. Nat. Fibers 00, 1–15 (2020). https://doi.org/10.1080/15440478.2020.1848709

    Article  CAS  Google Scholar 

  20. M.-K. Kazi, F. Eljack, E. Mahdi, Optimal filler content for cotton fiber/PP composite based on mechanical properties using artificial neural network. Compos. Struct. 251, 112654 (2020)

    Article  Google Scholar 

  21. M. Ramesh, M. Tamil Selvan, K. Niranjana, Thermal characterization and hygrothermal aging of lignocellulosic Agave Cantala fiber reinforced polylactide composites. Polym. Compos. 43, 6453 (2022). https://doi.org/10.1002/pc.26958

    Article  CAS  Google Scholar 

  22. N.E. Ikladious, N. Shukry, S.F. El-Kalyoubi, J.N. Asaad, S.H. Mansour, S.Y. Tawfik et al., Eco-friendly composites based on peanut shell powder / unsaturated polyester resin. Proc. Inst. Mech. Eng. Part L 233, 955–964 (2019). https://doi.org/10.1177/1464420717722377

    Article  CAS  Google Scholar 

  23. P.E. Imoisili, C.M. Ibegbulam, T.I. Adejugbe, Effect of concentration of coconut shell ash on the tensile properties of epoxy composites. Pac. J. Sci. Technol. 13, 463–468 (2012)

    Google Scholar 

  24. R. Punyamurthy, D. Sampathkumar, Mechanical properties of abaca fiber reinforced polypropylene composites : effect of chemical treatment by benzenediazonium chloride. J. King Saud Univ. – Eng. Sci. (2015). https://doi.org/10.1016/j.jksues.2015.10.004

    Article  Google Scholar 

  25. A.V.R. Prasad, K.M. Rao, Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Des. 32, 4658–4663 (2011). https://doi.org/10.1016/j.matdes.2011.03.015

    Article  CAS  Google Scholar 

  26. S. Indran, R.E. Raj, B.S.S. Daniel, S.S. Saravanakumar, Cellulose powder treatment on Cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. J. Reinf. Plast. Compos. 35, 212–227 (2016). https://doi.org/10.1177/0731684415611756

    Article  CAS  Google Scholar 

  27. R. Kumar, S. Bhowmik, Elucidating the coir particle filler interaction in epoxy polymer composites at low strain rate. Fibers Polym. 20, 428–439 (2019). https://doi.org/10.1007/s12221-019-8329-x

    Article  CAS  Google Scholar 

  28. E. Mahdi, D.R. Hernández, E.O. Eltai, Effect of water absorption on the mechanical properties of long date palm leaf fiber reinforced epoxy composites. J. Biobased Mater. Bioenergy 9(2), 173–181 (2015)

    Article  CAS  Google Scholar 

  29. E. Mahdi, D.R.H. Ochoa, A. Vaziri, A. Dean, M. Kucukvar, Khalasa date palm leaf fiber as a potential reinforcement for polymeric composite materials. Compos. Struct. 265, 113501 (2021)

    Article  CAS  Google Scholar 

  30. E. Mahdi, A.S.M. Hamouda, A.C. Sen, Quasi-static crushing behaviour of hybrid and non-hybrid natural fibre composite solid cones. Compos. Struct. 66(1–4), 647–663 (2004)

    Article  Google Scholar 

  31. A.A.J. Kumar, Mechanical and morphological characterization of basalt / Cissus quadrangularis hybrid fiber reinforced polylactic acid composites. Proc. Inst. Mech. Eng. 234, 1–13 (2020). https://doi.org/10.1177/0954406220911072

    Article  CAS  Google Scholar 

  32. N. Venkateshwaran, A. ElayaPerumal, M.S. Jagatheeshwaran, Effect of fiber length and fiber content on mechanical properties of banana fiber/ epoxy composite. J. Reinf. Plast. Compos. (2011). https://doi.org/10.1177/0731684411426810

    Article  Google Scholar 

  33. H. Om, M.K. Gupta, R.K. Srivastava, H. Singh, Study on the mechanical properties of epoxy composite using short sisal fibre. Mater. Today Proc. 2, 1347–1355 (2015). https://doi.org/10.1016/j.matpr.2015.07.053

    Article  CAS  Google Scholar 

  34. S. Akash, S. Avinash, M. Ramachandra, ScienceDirect a study on mechanical properties of silk fiber reinforced epoxy resin bio-composite with SiC as filler addition. Mater. Today Proc. 5, 3219–3228 (2018). https://doi.org/10.1016/j.matpr.2018.01.131

    Article  CAS  Google Scholar 

  35. S. Navaneethakrishnan, A. Athijayamani, Mechanical properties and absorption behavior of CSP filled roselle fiber reinforced hybrid composites. J. Mater. Environ. Sci. 7, 1674–1680 (2016)

    CAS  Google Scholar 

  36. A. Vinod, R. Vijay, D.L. Singaravelu, ThermoMechanical characterization of Calotropis gigantea stem powder-filled jute fiber-reinforced epoxy composites. J. Nat. Fibers 15, 648–657 (2018). https://doi.org/10.1080/15440478.2017.1354740

    Article  CAS  Google Scholar 

  37. S. Nath, H. Jena, P. Deepak, Analysis of mechanical properties of jute epoxy composite with cenosphere filler. SILICON 11, 659–671 (2019)

    Article  CAS  Google Scholar 

  38. V. Sharma, M.L. Meena, M. Kumar, Effect of filler percentage on physical and mechanical characteristics of basalt fiber reinforced epoxy based composites. Mater. Today Proc. 26, 2506–2510 (2020)

    Article  CAS  Google Scholar 

  39. R. Somasundaram et al., Utilization of discarded Cymbopogon flexuosus root waste as a novel lignocellulosic fiber for lightweight polymer composite application. Polym. Compos. 43(5), 2838–2853 (2022)

    Article  CAS  Google Scholar 

  40. V.C.S. Gandhi, I. Jenish, S. Indran et al., Mechanical and thermal analysis of Cissus quadrangularis stem fiber/epoxy composite with micro-red mud filler composite for structural application. Trans. Indian Inst. Met. 75, 737–747 (2022). https://doi.org/10.1007/s12666-021-02478-1

    Article  CAS  Google Scholar 

  41. R.S. Sundaram, R. Rajamoni, I. Suyambulingam, R. Isaac, Comprehensive characterization of industrially discarded cymbopogon flexuosus stem fiber reinforced unsaturated polyester composites: effect of fiber length and weight fraction. J. Nat. Fibers 2021, 1–16 (2021)

    Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Data curation—JI. Formal analysis—FSA. Investigation, Methodology, Project administration—TM. Supervision, Validation, Visualization- RS. Writing—original draft- IS. Review and editing—SS.

Corresponding author

Correspondence to Jenish Iyyadurai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyyadurai, J., Arockiasamy, F.S., Manickam, T. et al. Experimental Investigation on Mechanical, Thermal, Viscoelastic, Water Absorption, and Biodegradability Behavior of Sansevieria Ehrenbergii Fiber Reinforced Novel Polymeric Composite with the Addition of Coconut Shell Ash Powder. J Inorg Organomet Polym 33, 796–809 (2023). https://doi.org/10.1007/s10904-023-02537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02537-8

Keywords

Navigation