Skip to main content
Log in

Controlled Chemical Transformation and Crystallization Design for the Formation of Multifunctional Cu-Doped ZnO/ZnAl2O4 Composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Photoactive Cu-doped ZnO–ZnAl2O4 ceramic nanocomposites and coatings were prepared by polymer-salt method. The luminescent spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction methods were used for the study the structure, morphology and materials properties. The nanocomposites consist of small hexagonal ZnO and cubic ZnAl2O4 nanocrystals having size about 10 nm. The study of luminescence properties shows that prepared nanocomposites can be used as light down-converters that transfer short-wave ultraviolet (UV-C) radiation into long-wave ultraviolet (UV-A) and visible spectral range. These nanocomposites can be very attractive in photovoltaic applications as spectral down-converters. Also obtained nanocomposites demonstrate the ability to generate chemically active singlet oxygen under UV-A radiation and blue light. The experiments show that Cu-doped ZnO–ZnAl2O4 materials demonstrate antibacterial activity against gram-positive bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Allabergenov, U. Shaislamov, H. Shim, M.-J. Lee, A. Matnazarov, B. Choi, Effective control over near band-edge emission in ZnO/CuO multilayred films. Opt. Mater. Express 7(2), 494–502 (2017)

    Article  CAS  Google Scholar 

  2. D. Das, P. Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Adv. 4, 35735–35743 (2014). https://doi.org/10.1039/C4RA06063F

    Article  CAS  Google Scholar 

  3. H. Morkoş, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (Wiley, Weinheim, 2009) ISBN: 978-3-527-40813-9.

  4. E.L. Foletto, S. Battiston, J.M. Simöes, M.M. Bassaco, L.S.F. Pereira, É.M.M. Flores, E.I. Müller, Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process. Microporous Mesoporous Mater. 163, 29–33 (2012)

    Article  CAS  Google Scholar 

  5. C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. da Silva, O. Chiavone-Filho, C.A.O. do Nascimento, Synthesis of ternary zinc spinel oxides and their application in the photodegradation of organic pollutant. Ceram. Int. 40, 4173–4178 (2014). https://doi.org/10.1016/j.ceramint.2013.08.074

    Article  CAS  Google Scholar 

  6. S. Battiston, C. Rigo, E. Severo, M. Mazutti, R.C. Kuhn, A. Gündel, E.L. Foletto, Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Mater. Res. 17(3), 734–738 (2014). https://doi.org/10.1590/S1516-14392014005000073

    Article  CAS  Google Scholar 

  7. M. Zawadzki, W. Staszak, F.E. López-Suárez, M.J. Illán-Gómez, A. Bueno-López, Preparation, characterization and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels. Appl. Catal. A 371(1–2), 92–98 (2009). https://doi.org/10.1016/j.apcata.2009.09.035

    Article  CAS  Google Scholar 

  8. L. Cornu, M. Gaudon, V. Jubera, ZnAl2O4 as a potential sensor: variation of luminescence with thermal history. J. Mater. Chem. C 1, 5419–5428 (2013). https://doi.org/10.1039/C3TC30964A

    Article  CAS  Google Scholar 

  9. S.-F. Wang, G.-Z. Sub, L.-M. Fang, L. Lei, X. Xiang, X.-T. Zu, A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Sci. Rep. 5, 12849 (2015). https://doi.org/10.1038/srep12849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Ragupathi, L.J. Kennedy, J.J. Vijaya, A new approach: synthesis, characterization and optical studies of nano-zinc aluminate. Adv. Powder Technol. 25(1), 267–273 (2014)

    Article  CAS  Google Scholar 

  11. F.Z. Akika, M. Benamira, H. Lahmar, M. Trari, I. Avramova, Ş Suzer, Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight. Surf. Interfaces 18, 100406 (2020). https://doi.org/10.1016/j.surfin.2019.100406

    Article  CAS  Google Scholar 

  12. L. Zhu, H. Li, Z. Liu, P. Xia, Y. Xie, D. Xiong, Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity. J. Phys. Chem. C 122(17), 9531–9539 (2018). https://doi.org/10.1021/acs.jpcc.8b01933

    Article  CAS  Google Scholar 

  13. X.-j Guo, L.-M. Li, S.-M. Liu, G.-L. Bao, W.-H. Hou, Preparation of CuO/ZnO/Al2O3 catalysts for methanol synthesis using parallel-slurry-mixing method. J. Fuel Chem. Technol. 35(3), 329–333 (2007). https://doi.org/10.1016/S1872-5813(07)60023-1

    Article  CAS  Google Scholar 

  14. J. Abu-Dahrich, D. Rooney, A. Goguet, Y. Saih, Activity and deactivation studies for direct dimethyl ether synthesis using CuO-ZnO-Al2O3 with NH4ZSM-5, HZSM-5 or γ-Al2O3. Chem. Eng. J. 203, 201–211 (2012). https://doi.org/10.1016/j.cej.2012.07.011

    Article  CAS  Google Scholar 

  15. M.A. Subhan, T. Ahmed, R. Awal, R. Makioka, H. Nakata, T.T. Pakkanen, M. Suvanto, B.M. Kim, Synthesis, structure, luminescence and photophysical properties of nano CuO·ZnO·ZnAl2O4 multi metal oxide. J. Lumin. 146, 123–127 (2014). https://doi.org/10.1016/j.jlumin.2013.09.045

    Article  CAS  Google Scholar 

  16. S.V. Motloung, P. Kumari, L.F. Koao, T.E. Motaung, T.T. Hlatshwayo, M.J. Mochane, Effect of annealing time on the structure and optical properties of ZnAl2O4/ZnO prepared via citrate sol-gel process. Mater. Today Commun. 14, 294–301 (2018)

    Article  CAS  Google Scholar 

  17. S. Maslennikov, S. Evstropiev, I. Sochnikov, A. Karavaeva, K. Dukelskii, V. Gridchin, Photoactive UV-A transparent ZnO-Al2O3 coatings for singlet oxygen photogeneration. Opt. Engineering 58(7), 077105 (2019). https://doi.org/10.1117/1.OE.58.7.077105

    Article  CAS  Google Scholar 

  18. I.S. Boltenkov, E.V. Kolobkova, S.K. Evstropiev, Synthesis and characterization of transparent photocatalytic ZnO-Sm2O3 and ZnO-Er2O3 coatings. J. Photochem. Photobiol. A 367, 458–464 (2018). https://doi.org/10.1016/j.photochem.2018.09.016

    Article  CAS  Google Scholar 

  19. Y.H. Lu, M. Xu, L.X. Xu, C.L. Zhang, Q.P. Zhang, X.N. Xu, S. Xu, K. Ostrikov, Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method. J. Nanoparticle Res 17, 350 (2015). https://doi.org/10.1007/s11051-015-3150y

    Article  Google Scholar 

  20. M.R. Mhlongo, L.F. Koao, R.E. Kroon, S.V. Motloung, Investigative study of Mn2+ concentration on the structure, morphology and luminescence of sol-gel ZnAl2O4/ZnO/SrAl2O4/Sr3Al2O6 mixed phase nanophosphor. Physica B 578, 411746 (2020)

    Article  CAS  Google Scholar 

  21. Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6), 5164–5173 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. S.K. Evstropiev, A.V. Karavaeva, M.A. Petrova, N.V. Nikonorov, V.N. Vasilyev, L.L. Lesnykh, K.V. Dukelskii, Antibacterial effect of nanostructured ZnO-SnO2 coatings: the role of microstructure. Mater. Today Commun. 21, 100628 (2019)

    Article  CAS  Google Scholar 

  23. A.A. Shelemanov, S.K. Evstropiev, A.V. Karavaeva, N.V. Nikonorov, V.N. Vasilyev, Y.F. Podruhin, V.M. Kiselev, Enhanced singlet oxygen generation by bactericidal ZnO-MgO-Ag nanocomposites. Mater. Chem. Phys. 276, 125204 (2022). https://doi.org/10.1016/j.matchemphys.2021.125204

    Article  CAS  Google Scholar 

  24. F. Vatansever, W.C.M.A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N.A. Parizotto, R. Yin, G.P. Tegos, M.R. Hamblin, Antimicrobial strategy centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37, 955–989 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. S.K. Sinha, T. Rakshit, S.K. Ray, I. Manna, Characterization of ZnO-SnO2 thin film composites prepared by pulsed laser deposition. Appl. Surf. Sci. 257(1), 10551–10556 (2012)

    Google Scholar 

  26. R. Li, L. Zhang, P. Wang, Rational design of nanomaterials for water treatment. Nanoscale 7, 17167–17194 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4040 (2011)

    Article  Google Scholar 

  28. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792–820 (2017)

    Article  CAS  Google Scholar 

  29. W.S. Chiu, P.S. Khiew, M. Cloke, D. Isa, T.K. Tan, S. Radiman, R. Abd-Shukor, M.A. Abd. Hamid, N.M. Huang, H.N. Lim, C.H. Chia, Photocatalytic study of two-dimensional ZnO nanopellets in the decomposition of methylene blue. Chem. Eng. J. 158, 345–352 (2010)

    Article  CAS  Google Scholar 

  30. S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang, ZnO hierarchical microsphere for enhanced photocatalytic activity. J. Alloys Compd. 741, 622–632 (2018)

    Article  CAS  Google Scholar 

  31. Z. Cheng, S. Zhao, L. Han, A novel preparation method for ZnO/γ-Al2O3 nanofibres with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles. Nanoscale 10, 6892–6899 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. R.C. Bradt, S.L. Burkett, Microstructural control of zinc oxide varistor ceramics, in Ceramic Microstructures: Control at the Atomic Level. ed. by A.P. Tomsia, A.M. Glaeser (Springer, New York, 1998), pp.339–348

    Chapter  Google Scholar 

  33. J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H.-S. Kim, A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology 30(39), 392001 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. F. Lin, B. Cojocaru, C.-L. Chou, C.A. Cadigan, Y. Ji, D. Nordlund, T.-C. Weng, Z. Zheng, V.I. Pârvulescu, R.M. Richards, Photocatalytic activity and selectivity of ZnO materials in the decomposition of organic compounds. ChemCatChem 5(12), 3841–3846 (2013)

    Article  CAS  Google Scholar 

  35. X. Zhao, L. Wang, Xu. Xin, X. Lei, Xu. Sailong, F. Zhang, Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nanocomposite with ZnAl2O4 dispersed inside ZnO network. AIChE J. 58(2), 573–582 (2012)

    Article  CAS  Google Scholar 

  36. M. Shahmirzaee, M.S. Afarani, A.M. Arabi, A.I. Nejhad, In situ crystallization of ZnAl2O4/ZnO nanocomposites on alumina granule for photocatalytic purification of wastewater. Res. Chem. Intermed. 43, 321–340 (2017). https://doi.org/10.1007/s11164-016-2624-6

    Article  CAS  Google Scholar 

  37. X. Yuan, X. Cheng, Q. Jing, J. Niu, D. Peng, Z. Feng, X. Wu, ZnO/ZnAl2O4 nanocomposite with 3D sphere-like hierarchical structure for photocatalytic reduction of aqueous Cr (VI). Materials (Basel) 11(9), 1624 (2018). https://doi.org/10.3390/ma11091624

    Article  CAS  PubMed  Google Scholar 

  38. Li. Zhang, J. Yan, M. Zhou, Y. Yang, Y.-N. Liu, Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres. Appl. Surf. Sci. 268, 237–245 (2013). https://doi.org/10.1016/j.apsusc.2012.12.069

    Article  CAS  Google Scholar 

  39. H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, C. Zhang, ZnAl2O4 as a novel high-surface-area ozonation catalyst: one-step green synthesis, catalytic performance and mechanism. Chem. Eng. J. 260, 623–630 (2015). https://doi.org/10.1016/j.cej.2014.09.034

    Article  CAS  Google Scholar 

  40. A. Chaudhary, A. Mohammad, S.M. Mobin, Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater. Sci. Eng. B 227, 136–144 (2018). https://doi.org/10.1016/j.mseb.2017.10.009

    Article  CAS  Google Scholar 

  41. S.S. Sampath, D.G. Kanhere, R. Pandey, Electronic structure of spinel oxides: zinc aluminate and zinc gallate. J. Phys: Condens. Matter 11, 3635–3644 (1999)

    CAS  Google Scholar 

  42. H. Dixit, N. Tandon, S. Cottenier, R. Saniz, D. Lamoen, B. Partoens, V. Van Speybrock, M. Waroquier, Electronic structure and band gap of zinc oxides beyond LDA: ZnAl2O4, ZnGa2O4 and ZnIn2O4. New J. Phys. 13, 063002 (2011)

    Article  Google Scholar 

  43. T. Tangcharoen, J.T. Thrienprasert, C. Kongmark, Effect of calcination temperature on structural and optical properties of MAl2O4 (M=Ni, Cu, Zn) aluminate spinel nanoparticles. J. Adv. Ceram. 8(3), 352–366 (2019). https://doi.org/10.1007/s40145-019-0317-5

    Article  CAS  Google Scholar 

  44. Z. Huang, X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Y. Yao, D. Huang, B. Hao, Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24, 4140–4144 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. A.A. Shelemanov, R.K. Nuryev, S.K. Evstropiev, V.M. Kiselev, N.V. Nikonorov, The influence of polyvinylpyrrolidone on the structure and optical properties of ZnO-MgO nanocomposites synthesized by the polymer-salt method. Opt. Spectr. 129(9), 1176–1181 (2021)

    Google Scholar 

  46. A.R. Lim, Effects of paramagnetic interactions by the partial replacement of Zn2+ ions with Cu2+ ions in lead-free zinc-based perovskite (MA)2ZnCl4 crystal by MAS NMR. AIP Adv. 9, 105115 (2019). https://doi.org/10.1063/1.5121443

    Article  CAS  Google Scholar 

  47. F. Davar, M. Salavati-Niasari, Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol-gel method using new precursor. J. Alloys Compd. 509(5), 2487–2492 (2011). https://doi.org/10.1016/j.jallcom.2010.11.058

    Article  CAS  Google Scholar 

  48. P.A. Rodnyi, K.A. Chernenko, I.D. Venevtsev, Mechnaisms of ZnO luminescence in the visible spectral region. Opt. Spectr. 125(3), 372–378 (2018). https://doi.org/10.1134/S0030400X18090205

    Article  CAS  Google Scholar 

  49. H. Komitami, N. Sonoda, K. Hara, Preparation and luminescent characteristics of UV-C emitting ZnAl2O4 phosphor for sterilization device, in Proceedings of the International Display Workshops, IDW’20, (2020) p. 346–349.

  50. F. Hollósy, Effect of ultraviolet radiation on plant cells. Micron 33(2), 179–197 (2002). https://doi.org/10.1016/s0968-4328(01)00011-7

    Article  PubMed  Google Scholar 

  51. B.B. Surjadinata, D.A. Jacobo-Velázquez, L. Cisneros-Zevallos, UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding. Molecules 22(4), 668 (2017). https://doi.org/10.3390/molecules22040668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. T. Tezuka, T. Hotta, I. Watanabe, Growth promotion of tomato and radish plants by solar UV radiation reaching the Earth’s surface. J. Photochem. Phobiol. B 19(1), 3061–3066 (1999)

    Google Scholar 

  53. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review of zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  54. L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008)

    Article  CAS  Google Scholar 

  55. L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2 and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006)

    Article  CAS  PubMed  Google Scholar 

  56. M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45(5), 1977–1983 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Science Foundation, according to the research project No. 20-19-00559.

Author information

Authors and Affiliations

Authors

Contributions

Tincu and Shelemanov - obtaining data and conducting an experiment Evstropiev - writing the main manuscript text Shelemanov and Evstropiev - preparing figures All authors reviewed the manuscript.

Corresponding author

Correspondence to Andrey Aleksandrovich Shelemanov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tincu, A., Shelemanov, A.A., Evstropiev, S.K. et al. Controlled Chemical Transformation and Crystallization Design for the Formation of Multifunctional Cu-Doped ZnO/ZnAl2O4 Composites. J Inorg Organomet Polym 33, 398–406 (2023). https://doi.org/10.1007/s10904-022-02507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02507-6

Keywords

Navigation