Skip to main content
Log in

Influence of Synthesis Method on Structural, Morphological, Magnetic, and Antimicrobial Properties of Fe-Ag Nanoparticles

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This contribution reports on the development of two versatile and efficient methods, namely the green and gamma radiolysis for Fe-Ag nanoparticles (NPs) synthesis, characterization, and further their growth inhibition potential on some spoilage microorganisms. Green Ag/Fe2O3 NPs were obtained at Fe-Ag [3:1], annealing temperature of 800 °C for 2 h, and gamma irradiated Ag/Fe3O4 NPs were obtained at Fe-Ag [7:1], a 50 kGy dose. The characterization techniques were performed with these two samples whereby the sizes from crystallographic and microscopic analyses were 39.59 and 20.00 nm for Ag/Fe2O3 NPs, 28.57 and 15.37 nm for Ag/Fe3O4 NPs, respectively. The polycrystallinity nature observed from X-ray diffraction was in accordance with the selected area electron diffraction. The vibrational properties confirmed the presence of bimetallic Fe-Ag NPs with the depiction of chemical bonds, Fe–O and Ag–O from attenuated total reflection-Fourier transform infrared spectroscopy and elements Ag, Fe, O from energy-dispersive X-ray spectroscopy analyses. The magnetic properties carried out using a vibrating sample magnetometer suggested a superparamagnetic behavior for the Ag/Fe2O3 NPs and a ferromagnetic behavior for the Ag/Fe3O4 NPs. Overall, the green Ag/Fe2O3 NPs successfully inhibited the growth of spoilage yeasts Candida guilliermondii, Zygosaccharomyces fermentati, Zygosaccharomyces florentinus, and spoilage molds Botrytis cinerea, Penicillium expansum, Alternaria alstroemeriae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.A. Monteiro, R.B. Levy, R.M. Claro, I.R. Castro, G. Cannon, A new classification of foods based on the extent and purpose of their processing. Cad Saude Publica 26(11), 2039–2049 (2010). https://doi.org/10.1590/s0102-311x2010001100005

    Article  Google Scholar 

  2. J.M. Zuehlke, B. Petrova, C.G. Edwards, Advances in the control of wine spoilage by Zygosaccharomyces and Dekkera/Brettamoyces. Annu. Rev. Food Sci. Technol. 4, 57–58 (2013)

    Article  CAS  Google Scholar 

  3. M. Mewa-Ngongang, H.W. du Plessis, U.F. Hutchinson, L. Mekuto, S.K.O. Ntwampe, Kinetic modelling and optimization of antimicrobial compound production by Candida pyralidae KU736785 for control of Candida guilliermondii. Food Sci. Technol. Inter. 23(4), 1–13 (2017)

    Article  Google Scholar 

  4. M. Mewa-Ngongang, H.W. du Plessis, E. Hlangwani, S.K.O. Ntwampe, B.S. Chidi, U.F. Hutchinson, P.N. Neil, Activity interactions of crude biopreservatives against spoilage yeast consortia. Fermentation 5(3), 53 (2019). https://doi.org/10.3390/fermentation5030053

    Article  CAS  Google Scholar 

  5. S. Droby, V. Vinokur, B. Weiss, L. Cohen, A. Daus, E.E. Goldschmidt, R. Porat, Induction of resistance to Penicilium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 92, 393–399 (2002)

    Article  CAS  Google Scholar 

  6. F. Comitini, N.D. Pietro, L. Zacchi, I. Mannazzu, M. Ciani, Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology 150(8), 2535–2541 (2004)

    Article  CAS  Google Scholar 

  7. N.N. Mehlomakulu, M.E. Setati, B. Divol, Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Inter. J. Food Microbiol. 188, 83–91 (2014)

    Article  CAS  Google Scholar 

  8. C.J. Moir, 2001 Spoilage of processed foods: Causes and diagnosis. The Food Microbiology Group of the Australian Institute of Food Science and Technology Inc., Waterloo, NSW

  9. R.R. Sharma, D. Singh, R. Singh, Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control 50(3), 205–221 (2009)

    Article  Google Scholar 

  10. J.I. Pitt, A.D. Hocking, Fungi and food spoilage, 3rd edn. (Springer, Boston, 2009), pp.357–382

    Google Scholar 

  11. B. Williamson, B. Tudzynski, P. Tudzynski, J.A.V. Kan, Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8(5), 561–580 (2007)

    Article  CAS  Google Scholar 

  12. M.D. Kirk, S.M. Pires, R.E. Black, M. Caipo, J.A. Crump, B. Devleesschauwer, D. Döpfer, A. Fazil, C.L. Fischer-Walker, T. Hald, A.J. Hall, K.H. Keddy, R.J. Lake, C.F. Lanata, P.R. Torgerson, A.H. Havelaar, F.J. Angulo, World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 12(12), e1001921 (2015). https://doi.org/10.1371/journal.pmed.1001921

    Article  Google Scholar 

  13. R.K. Yadav, R. Gupta, Impact of chemical food preservatives through local product on human health a review. High Technol. Lett. 27(6), 767–773 (2021). https://doi.org/10.37896/HTL27.6/3780

    Article  Google Scholar 

  14. G. Sharma, N.D. Jasuja, M. Kumar, M.I. Ali, Biological synthesis of silver nanoparticles by cell-free extract of spirulina platensis. J. Nanotechnol. 2015(4), 1–6 (2015). https://doi.org/10.1155/2015/132675

    Article  CAS  Google Scholar 

  15. L.Y. Wang, J. Luo, S.Y. Shan, E. Crew, J. Yin, C.J. Zhong, B. Wallek, S.S.S. Wong, Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal. Chem. 83, 8688–8695 (2011)

    Article  CAS  Google Scholar 

  16. Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6), 5164–5173 (2012). https://doi.org/10.1021/nn300934k

    Article  CAS  Google Scholar 

  17. D. Zahra, R. Mojtaba, G. Mostafa, K. Fatemeh, Green synthesis of Ag-Fe3O4 nanocomposite utilizing Eryngium planum L. leaf extract and its potential applications in medicine. J. Drug Deliv. Sci. Technol. 67, 102941 (2022). https://doi.org/10.1016/j.jddst.2021.102941

    Article  CAS  Google Scholar 

  18. T. Zargar, A. Kermanpur, Effects of hydrothermal process parameters on the physical, magnetic, and thermal properties of Zn0.3 Fe2.7O4 nanoparticles for magnetic hyperthermia applications. Ceram. Int. 43(7), 5794–5804 (2017)

    Article  CAS  Google Scholar 

  19. S. Arokiyaraj, M. Saravanan, N.K.U. Prakash, A.M. Valan, B. Vijayakumar, S. Vincent, Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemonemexicana L. leaf extract: an in vitro study. Mater. Res. Bull. 48(9), 3323–3327 (2013)

    Article  CAS  Google Scholar 

  20. B. Liu, J. Zhou, B. Zhang, J. Qu, Synthesis of Ag@Fe3O4 nanoparticles for photothermal treatment of ovarian cancer. J. Nanomater. 2019, 6457968 (2019). https://doi.org/10.1155/2019/6457968

    Article  CAS  Google Scholar 

  21. A. Mohamed, R.B. Parvatheeswara, M.O. Abdel-Hamed, K. CheolGi, Modified polyol route for synthesis of Fe3O4/Ag and α-Fe/Ag nanocomposite. J. Alloys Compd. 615, 308–312 (2014)

    Article  Google Scholar 

  22. P. Lu, T. Jing, C.Y. Hong, Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties. Sci. China Chem. 56(3), 362–369 (2013). https://doi.org/10.1007/s11426-012-4763-y

    Article  CAS  Google Scholar 

  23. N. Medina-Córdova, R. López-Aguilar, A.I. Campa-Córdova, C. Angulo, Biocontrol activity of the marine yeast debaryomyces hanseni against phytopathogenic fungi and its ability to inhibit mycotoxins production in maize grain (Zea mays L.). Biol. Control. 97, 70–79 (2016)

    Article  Google Scholar 

  24. D.K. Chmielewska, U. Gryczka, W. Migdal, Recent patents on creative ionizing radiation in nanotechnology. Recent Pat. Nanotechnol. 2(3), 201–207 (2008). https://doi.org/10.2174/187221008786369615

    Article  CAS  Google Scholar 

  25. S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico, F. He, J. Hong, Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. & Innov. 26, 102336 (2022). https://doi.org/10.1016/j.eti.2022.102336

    Article  CAS  Google Scholar 

  26. J.F. Hund, M.F. Bertino, G. Zhang, C.S. Levantis, N. Lewantis, A.T. Tokuhiro, J. Farmer, Formation and entrapment of noble metal clusters in silica monoliths by gamma radiolysis. J. Phys. Chem. B 107, 465–469 (2003)

    Article  CAS  Google Scholar 

  27. S. Kalunge, A.V. Humbe, M.V. Khedkar, S.D. More, A.P. Keche, A.A. Pandit, Investigation on synthesis, structural and electrical properties of zinc ferrite on gamma irradiation. J. Phys. Conf. series 1644(1), 012017 (2020). https://doi.org/10.1088/1742-6596/1644/1/012017

    Article  CAS  Google Scholar 

  28. V. Makarov, A. Love, O. Sinitsyna, S. Makarova, I. Yaminsky, M. Taliansky, N. Kalinina, Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6(1), 35–44 (2014)

    Article  CAS  Google Scholar 

  29. N.G. Shimpi, M. Khan, S. Shirole, S. Sonawane, Process optimization for the synthesis of silver (AgNPs), iron oxide (α-Fe2O3 NPs) and core-shell (Ag-Fe2O3 NPs) nanoparticles using the aqueous extract of alstonia scholaris: a greener approach. The Open Mater. Sci. J. 12(1), 29–39 (2018). https://doi.org/10.2174/1874088X01812010029

    Article  CAS  Google Scholar 

  30. L. Wei-Hong, N. Yang, Green and facile synthesis of Ag-Fe3O4 nanocomposites using the aqueous extract of Crataegus pinnatifida leaves and their antibacterial performance. Mater. Lett. 162, 157–160 (2016). https://doi.org/10.1016/j.matlet.2015.09.064

    Article  CAS  Google Scholar 

  31. R. Sandupatla, A. Dongamanti, R. Koyyati, Antimicrobial and antioxidant activities of phytosynthesized Ag, Fe and bimetallic Fe-Ag nanoparticles using Passiflora edulis: A comparative study. Mater. Today: Proceed. 44(1), 2665–2673 (2021)

    CAS  Google Scholar 

  32. M. Sajjadi, M. Nasrollahzadeh, S.M. Sajadi, Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J. Coll. Interface Sci. 497, 1–13 (2017)

    Article  CAS  Google Scholar 

  33. H. Muthukumar, S.K. Palanirajan, M.K. Shanmugam, S.N. Gummadi, Plant extract mediated synthesis enhanced the functional properties of silver ferrite nanoparticles over chemical mediated synthesis. Biotechnology 26, e00469 (2020)

    Google Scholar 

  34. K. Sameer, M. Jadhav, P. Raikar, D.A. Barretto, S.K. Vootlac, U.S. Raikar, Green synthesized multifunctional Ag@Fe2O3 nanocomposites for effective antibacterial, antifungal, and anticancer properties. New J. Chem. 41, 9513–9520 (2017)

    Article  Google Scholar 

  35. S.R. Batakurki, V. Adimule, M.M. Pai, E. Ahmed, P. Kendrekar, Synthesis of Cs-Ag/Fe2O3 Nanoparticles Using Vitis labrusa Rachis Extract as Green Hybrid Nanocatalyst for the Reduction of Arylnitro Compounds. Topics in Catal. (2022). https://doi.org/10.1007/s11244-022-01593-7

    Article  Google Scholar 

  36. J.R. de Oliveira, S.E.A. Camargo, L.D. de Oliveira, Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 26, 5 (2019). https://doi.org/10.1186/s12929-019-0499-8

    Article  Google Scholar 

  37. S.K. Noukelag, C.J. Arendse, M. Maaza, Biosynthesis of hematite phase Fe2O3 nanoparticles using an aqueous extract of Rosmarinus officinalis leaves. Mater. Today: Proceed. 43, 3679–3683 (2021)

    CAS  Google Scholar 

  38. M. Ghaedi, M. Yousefinejad, M. Safarpoor, H.Z. Khafri, M.K. Purkait, Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J. Ind. Eng. Chem. 31, 167–172 (2015)

    Article  CAS  Google Scholar 

  39. M. Mewa-Ngongang, H.W. du Plessis, S.K.O. Ntwampe, B.S. Chidi, U.F. Hutchinson, L. Mekuto, P.J. Neil, Grape Pomace Extracts as Fermentation Medium for the Production of Potential Biopreservation Compounds. Foods 8(2), 51 (2019). https://doi.org/10.3390/foods8020051

    Article  CAS  Google Scholar 

  40. M. Hoffmann, V.N. Antonov, L.V. Bekenov, K. Kokko, W. Hergert, A. Ernst, Variation of magnetic properties of Sr2FeMoO6 due to oxygen vacancies. J. Phys. Condens. Matter. 30(30), 305801 (2018). https://doi.org/10.1088/1361-648X/aacb8d

    Article  Google Scholar 

  41. A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7(1), 144 (2012). https://doi.org/10.1186/1556-276X-7-144

    Article  CAS  Google Scholar 

  42. R.M. Khafagy, Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core–shell structure. J. Alloys Compd. 509(41), 9849–9857 (2011)

    Article  CAS  Google Scholar 

  43. Q. Song, Z.J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Amer. Chem. Soc. 126(19), 6164–6168 (2004)

    Article  CAS  Google Scholar 

  44. A.A. Mostafa, A.A. Al-Askar, K.S. Almaary, T.M. Dawoud, E.N. Sholkamy, M.M. Bakri, Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 25, 361–366 (2018)

    Article  Google Scholar 

  45. S. Moreno, T. Scheyer, C.S. Romano, A.A. Vojnov, Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Res. 40(2), 223–231 (2006)

    Article  CAS  Google Scholar 

  46. E. Lorenzetti, J.R. Stangarlin, O.J. Kuhn, Antifungal activity of rosemary extract on Macrophomina phaseolina and charcoal rot control in soybean. J. Plant Pathol. 99(3), 783–786 (2017)

    Google Scholar 

Download references

Acknowledgements

This research program was generously supported by grants from the National Research Foundation of South Africa (NRF), and the Academy of Sciences for the Developing World (TWAS). The authors acknowledge UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, iThemba LABS, the Cape Peninsula University of Technology (CPUT), as well as the University of the Western Cape (UWC) to whom they are all grateful.

Funding

National Research Foundation South Africa, UID:139198; North-West University, RK 16; University of the Western Cape, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing- Original draft preparation: Sandrine Kamdoum Noukelag; Data curation, methodology: Sandrine Kamdoum Noukelag, Maxwell Mewa-Ngongang, Siphelo Ngqoloda, Lebogang Kotsedi; Visualization, investigation: Lovasoa Christine Razanamahandry, Malik Maaza; Writing-review and editing: Sandrine Kamdoum Noukelag, Maxwell Mewa-Ngongang, Seteno K.O. Ntwampe, Christopher J. Arendse; Supervision: Malik Maaza.

Corresponding author

Correspondence to Sandrine Kamdoum Noukelag.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noukelag, S.K., Mewa-Ngongang, M., Ngqoloda, S. et al. Influence of Synthesis Method on Structural, Morphological, Magnetic, and Antimicrobial Properties of Fe-Ag Nanoparticles. J Inorg Organomet Polym 33, 159–169 (2023). https://doi.org/10.1007/s10904-022-02493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02493-9

Keywords

Navigation