Skip to main content
Log in

Nanoarchitectonics of Starch Nanoparticles Rosin Catalyzed by Algerian Natural Montmorillonite (Maghnite-H+) for Enhanced Antimicrobial Activity

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, potato starch was hydrolyzed by acid (HCl) to form nanoparticles (SNPs) that were esterified with acid Rosin using a green heterogeneous catalyst based on Algerian montmorillonite clay known as “Magnhite”. It has a similar activity to the classical Brönsted (H2SO4) and Lewis (Al2O3) acids, which implies that it can replace homogeneous acid catalysts. Particular emphasis was devoted to investigate the influence of temperature, reaction time, and amount of catalyst on the degree of substitution (DS) on the reaction conditions to achieve a high DS. Fourier Transform Infrared analysis confirms the esterification of SNPs by the appearance of new bands at 1724 cm−1 assigned to ester group. X-ray diffraction and scanning electron microscopy indicate that the esterification reaction reduces the crystallinity while the morphology changes from SNPs nanoparticles to a completely destroyed form. Besides, the thermal stability of esterified SNPs has been slightly reduced compared to unmodified starch. The volumetric assay was used to evaluate the DS of the products and the effects of the rosin/glucose anhydrous acid unit in the molar ratio. It is found that DS increases with increasing the molar ratio and reaches its maximum value of 0.135 at a molar ratio of 4:1. Furthermore, antimicrobial activity study of SNPs esterified with rosin acid (DS between 0 and 0.141), revealed that the esterified SNPs were effective against all the tested bacterial strains. Moreover, the DS is directly proportional to the zone of inhibition. This research showcases the importance of the newly designed SNPs-Rosin formulation in the biomedical and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Zhu, Encapsulation and delivery of food ingredients using starch based systems. Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2017.02.101

    Article  Google Scholar 

  2. R.C. Eerlingen, J.A. Delcour, Formation, analysis, structure and properties of type III enzyme resistant starch. J. Cereal Sci. 22, 129–138 (1995)

    Article  CAS  Google Scholar 

  3. Y. Zhu, C. Romain, C.K. Williams, Sustainable polymers from renewable resources. Nature (2016). https://doi.org/10.1038/nature21001

    Article  Google Scholar 

  4. A.O. Ashogbon, E. Akintayo, A. Ekiti, Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Strach (2014). https://doi.org/10.1002/star.201300106

    Article  Google Scholar 

  5. L. Yu, K. Dean, L. Li, Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 576–602 (2006). https://doi.org/10.1016/j.progpolymsci.2006.03.002

    Article  CAS  Google Scholar 

  6. A. Bule, Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23, 85–112 (1998)

    Article  Google Scholar 

  7. A.O. Ashogbon, E.T. Akintayo, Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch 66, 41–57 (2014). https://doi.org/10.1002/star.201300106

    Article  CAS  Google Scholar 

  8. A.N.E.H. Sid, B. Kouini, A. Hazourli, R. Djafar, N. Gherraf, M. Bououdina, The synergistic effect of algerian Na-bentonite/potato starch/grass powder on the enhancement of aged water-based drilling fluids. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-021-06519-1

    Article  Google Scholar 

  9. N. Masina et al., A review of the chemical modification techniques of starch. Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.09.094

    Article  Google Scholar 

  10. D.L. Topping, P.M. Clifton, Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81(3), 1031–1064 (2018)

    Article  Google Scholar 

  11. R. Hoover, Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr. Polym. (2001). https://doi.org/10.1016/S0144-8617(00)00260-5

    Article  Google Scholar 

  12. S. Pe, The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Strach 62, 389–420 (2010). https://doi.org/10.1002/star.201000013

    Article  CAS  Google Scholar 

  13. A. Rodrigues, M. Emeje, Recent applications of starch derivatives in nanodrug delivery. Carbohydr. Polym. 87(2), 987–994 (2012). https://doi.org/10.1016/j.carbpol.2011.09.044

    Article  CAS  Google Scholar 

  14. B. Bhushan, Introduction to nanotechnology (Springer Handbooks, Berlin, 2017), pp.1–19

    Google Scholar 

  15. Y. Fan, F. Picchioni, Modification of starch: a review on the application of ‘green’ solvents and controlled functionalization. Carbohydr. Polym. 241, 116350 (2020). https://doi.org/10.1016/j.carbpol.2020.116350

    Article  CAS  Google Scholar 

  16. Q. Chen et al., Recent progress in chemical modification of starch and its applications. RSC Adv. 5(83), 67459–67474 (2015). https://doi.org/10.1039/c5ra10849g

    Article  CAS  Google Scholar 

  17. A.S. Babu, R. Parimalavalli, K. Jagannadham, J.S. Rao, Chemical and structural properties of sweet potato starch treated with organic and inorganic acid. J. Food Sci. Technol. 52(9), 5745–5753 (2015). https://doi.org/10.1007/s13197-014-1650-x

    Article  CAS  Google Scholar 

  18. S. Maiti, S.S. Ray, A.K. Kundu, Rosin: a renewable resource for polymers and polymer chemicals. Progress Polym Sci 14(3), 297–338 (1989)

    Article  CAS  Google Scholar 

  19. P.M. Division, M.S. Centre, Rosin: a renewable resource for polymers and polymer chemicals. Prog. Polym. Sci. 14, 297–338 (1989)

    Article  Google Scholar 

  20. A. Zaoui, V. Mahendra, G. Mitchell, Z. Cherifi, A. Harrane, Design, synthesis and thermo—chemical properties of rosin vinyl imidazolium based compounds as potential advanced biocompatible materials. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00691-0

    Article  Google Scholar 

  21. H. Derdar et al., Green nanocomposites from rosin-limonene copolymer and algerian clay. Polymers (Basel) 12, 2020 (1971)

    Google Scholar 

  22. P.A. Wilbon, F. Chu, C. Tang, N.E. NatuKochkina, Y. Khokhlova, Synthesis of silver nanoparticles in DMSO solutions of starch: a comparative investigation of native and soluble starches. Prog. Renew. Polym. (2015). https://doi.org/10.17586/2220-8054-2015-6

    Article  Google Scholar 

  23. Z. Xu, W. Lou, G. Zhao, M. Zhang, J. Hao, X. Wang, Pentaerythritol rosin ester as an environmentally friendly multifunctional additive in vegetable oil-based lubricant. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.02.038

    Article  Google Scholar 

  24. A.M. Atta, I.F. Nassar, H.M. Bedawy, Unsaturated polyester resins based on rosin maleic anhydride adduct as corrosion protections of steel. React. Func. Polym. 67, 617–626 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.04.001

    Article  CAS  Google Scholar 

  25. S. Karakus, M. Ilgar, I.M. Kahyaoglu, A. Kilislioglu, Influence of ultrasound irradiation on the intrinsic viscosity of guar gum–PEG/rosin glycerol ester nanoparticles. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.254

    Article  Google Scholar 

  26. M. Akeb, M. Belbachir, A. Harrane, Polymerization of β-pinene by using natural montmorillonite clay as a green catalyst. Green Mater. 6(2), 58–64 (2018). https://doi.org/10.1680/jgrma.17.00040

    Article  Google Scholar 

  27. S. Peng, X. Fan, J. Zhang, F. Wang, A highly efficient heterogeneous catalyst of Ru/MMT: preparation, characterization, and evaluation of catalytic effect. Appl. Catal. B. 140–141, 115–124 (2013). https://doi.org/10.1016/j.apcatb.2013.03.029

    Article  CAS  Google Scholar 

  28. L. De Chimie, D. De Chimie, F. Sciences, Preparation of Poly(oxybutyleneoxymaleoyl) catalyzed by a proton exchanged montmorillonite clay. Molecules 9, 968–977 (2004)

    Article  Google Scholar 

  29. S. Lycourghiotis, D. Makarouni, E. Kordouli, K. Bourikas, C. Kordulis, V. Dourtoglou, Transformation of limonene into high added value products over acid activated natural montmorillonite. Catal. Today 355, 757–767 (2020). https://doi.org/10.1016/j.cattod.2019.04.036

    Article  CAS  Google Scholar 

  30. Y. Zhang, S. Li, Y. Xu, X. Shi, M. Zhang, Y. Huang, Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial. Nano Res. 15(6), 5556–5568 (2022)

    Article  CAS  Google Scholar 

  31. C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11, 2804–2837 (2021). https://doi.org/10.1039/d0ra09941d

    Article  CAS  Google Scholar 

  32. M.Z.I. Nizami, B.D.L. Campéon, A. Satoh, Y. Nishina, Graphene oxide-based multi-component antimicrobial hydrogels. Bull. Chem. Soc. Jpn. 95(5), 713–720 (2022). https://doi.org/10.1246/bcsj.20220017

    Article  CAS  Google Scholar 

  33. J.P. Hill, R.G. Shrestha, J. Song, Q. Ji, K. Ariga, L.K. Shrestha, Monitoring the release of silver from a supramolecular fullerene C60-AgNO3 Nanomaterial. Bull. Chem. Soc. Jpn. 94(4), 1347–1354 (2021). https://doi.org/10.1246/bcsj.20210028

    Article  CAS  Google Scholar 

  34. A.S. Abreu, M. Oliveira, A. Sá, R.M. Rodrigues, M.A. Cerqueira, A.A. Vicente, A.V. Machado, Antimicrobial nanostructured starch based films for packaging. Carbohydr. Polym. 129, 127–134 (2015). https://doi.org/10.1016/j.carbpol.2015.04.021

    Article  CAS  Google Scholar 

  35. M.B. Vásconez, S.K. Flores, C.A. Campos, J. Alvarado, L.N. Gerschenson, Antimicrobial activity and physical properties of chitosan—tapioca starch based edible films and coatings. Food Res. Int. 42(7), 762–769 (2009). https://doi.org/10.1016/j.foodres.2009.02.026

    Article  CAS  Google Scholar 

  36. R. Syafiq, S.M. Sapuan, M.Y.M. Zuhri, R.A. Ilyas, A. Nazrin, S.F.K. Sherwani, Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: a review. Polymers (2020). https://doi.org/10.3390/polym12102403

    Article  Google Scholar 

  37. Y. Zhao, J. Yang, X. Ding, X. Ding, S. Duan, F. Xu, Polycaprolactone/polysaccharide functional composites for low- temperature fused deposition modelling. Bioact. Mater. 5(2), 185–191 (2020). https://doi.org/10.1016/j.bioactmat.2020.02.006

    Article  Google Scholar 

  38. K. Saravanakumar et al., Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int. J. Biol. Macromol. 182, 1409–1418 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.036

    Article  CAS  Google Scholar 

  39. Z. Draoua, A. Harrane, M. Belbachir, Amphiphilic biodegradable poly(ε-caprolactone)-poly (ethylene glycol)—poly(ε-caprolactone) triblock copolymer synthesis by maghnite-H+ as a green catalyst. J. Macromol. Sci. A 52(2), 130–137 (2015). https://doi.org/10.1080/10601325.2015.980763

    Article  CAS  Google Scholar 

  40. D. Le, H. Angellier-Coussy, Preparation and application of starch nanoparticles for nanocomposites: a review. React. Func. Polym. (2014). https://doi.org/10.1016/j.reactfunctpolym.2014.09.020

    Article  Google Scholar 

  41. C.S.W. Adhesive, Preparation and properties of normal temperature cured starch-based wood adhesive. BioResources 11(2), 4839–4849 (2016)

    Google Scholar 

  42. R. Lin, H. Li, H. Long, J. Su, W. Huang, Structure and characteristics of lipase-catalyzed rosin acid starch. Food Hydrocoll 43, 1–8 (2014). https://doi.org/10.1016/j.foodhyd.2014.06.008

    Article  CAS  Google Scholar 

  43. K. Wang, M. Nicholaou, Suppression of antimicrobial resistance in MRSA using CRISPR-dCas9. Amer Soc Clinic Lab Sci 30(4), 207–213 (2017)

    Article  Google Scholar 

  44. F. Haddouchi, H.A. Lazouni, P. Naturels, D. De Biologie, F. Sciences, U.A. Belkaid, Etude physicochimique et microbiologique de l’ huile essentielle de Thymus fontanesii Boiss & Reut Résumé. Afrique Sci. 05(2), 246–259 (2009)

    Google Scholar 

  45. F. Han, C. Gao, M. Liu, F. Huang, B. Zhang, Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution. Int. J. Biol. Macromol. 59, 372–376 (2013). https://doi.org/10.1016/j.ijbiomac.2013.04.080

    Article  CAS  Google Scholar 

  46. P. Li, X. He, Y. Zuo, X. Li, Y. Wu, Synthesis and characterization of lactic acid esterified starch by an in-situ solid phase method. Int. J. Biol. Macromol. 156, 1316–1322 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.171

    Article  CAS  Google Scholar 

  47. A. Agi et al., Ultrasound-assisted weak-acid hydrolysis of crystalline starch nanoparticles for chemically enhanced oil recovery. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.10.099

    Article  Google Scholar 

  48. A.O. Odiongenyi, N.B. Essien, R.A. Ukpe, Corn starch as a substitute for commercial food starch: FT-IR and rheological characterization. J. Sci. Eng. Res. 3(6), 494–501 (2016)

    CAS  Google Scholar 

  49. S. Na et al., Effect of Rosin modification on the visual characteristics of round bamboo culm. Polymers 13(20), 3500 (2021)

    Article  Google Scholar 

  50. K. Zhang et al., Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization. Eur. Polym. J. 119, 136–147 (2019). https://doi.org/10.1016/j.eurpolymj.2019.07.021

    Article  CAS  Google Scholar 

  51. Y. Xu et al., Preparation and characterization of organic-soluble acetylated starch nanocrystals. Carbohydr. Polym. 80(4), 1078–1084 (2010). https://doi.org/10.1016/j.carbpol.2010.01.027

    Article  CAS  Google Scholar 

  52. S. Susanti, D. Al Karoma, D. Mulyani, M. Masruri, Physical properties and characterization of cassava peel waste modified by esterification. J. Pure Appl. Chem. Res. 6(3), 255–260 (2017). https://doi.org/10.21776/ub.jpacr.2017.006.03.346

    Article  CAS  Google Scholar 

  53. J. Xin, Y. Wang, T. Liu, K. Lin, L. Chang, C. Xia, Biosysthesis of corn starch palmitate by lipase novozym 435. Int. J. Mol. Sci. (2012). https://doi.org/10.3390/ijms13067226

    Article  Google Scholar 

  54. R. Lin, H. Li, H. Long, J. Su, W. Huang, Synthesis of rosin acid starch catalyzed by lipase. BioMed Res. Int. (2014). https://doi.org/10.1155/2014/647068

    Article  Google Scholar 

  55. M. Amin, B. Amine, M. Belalia, A. Mostefai, N. Leila, B.M. Bououdina, Green synthesis of starch nanoparticles (SNPs) by esterification with rosin acid catalyzed by maghnite-H + (Algerian montmorillonite) with enhanced antioxidant activity. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07033-8

    Article  Google Scholar 

  56. H. Sun, T. Peng, B. Liu, H. Xian, Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Appl. Clay Sci. 114, 440–446 (2015). https://doi.org/10.1016/j.clay.2015.06.026

    Article  CAS  Google Scholar 

  57. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nat. Publ. Gr. 6(9), 534 (2011). https://doi.org/10.1038/nnano.2011.145

    Article  CAS  Google Scholar 

  58. C. Costa, P.H. Campelo, S.M. De Souza, Rietveld-based quantitative phase analysis of B-type starch crystals subjected to ultrasound and hydrolysis processes. J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.49529

    Article  Google Scholar 

  59. K. Dome, E. Podgorbunskikh, A. Bychkov, O. Lomovsky, Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers (2020). https://doi.org/10.3390/polym12030641

    Article  Google Scholar 

  60. T. Desalegn, I.J.V. Garcia, J. Titman, P. Licence, Y. Chebude, Synthesis of starch vernolate in 1-butyl-3-methylimidazolium chloride ionic liquid. Starch (2015). https://doi.org/10.1002/star.201400114

    Article  Google Scholar 

  61. S. Jiang, L. Dai, Y. Qin, L. Xiong, Q. Sun, Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles. PLoS ONE (2016). https://doi.org/10.1371/journal.pone.0150043

    Article  Google Scholar 

  62. F. Li et al., Bifunctional reinforcement of green biopolymer packaging nanocomposites with natural cellulose nanocrystals-rosin hybrids. ACS Appl. Bio. Mater. (2020). https://doi.org/10.1021/acsabm.9b01100

    Article  Google Scholar 

  63. S. Ketkaew, P. Kasemsiri, S. Hiziroglu, Effect of oregano essential oil content on properties of green biocomposites based on cassava starch and sugarcane bagasse for bioactive packaging. J. Polym. Environ. (2017). https://doi.org/10.1007/s10924-017-0957-x

    Article  Google Scholar 

  64. M.V. Limaye, V. Gupta, S.B. Singh, G.R. Paik, P. Singh, Antimicrobial activity of composite consisting of cellulose nanofibers and silver nanoparticles. ChemistrySelect 4(41), 12164–12169 (2019). https://doi.org/10.1002/slct.201901572

    Article  CAS  Google Scholar 

  65. C. Pan, J. Qian, C. Zhao, H. Yang, X. Zhao, H. Guo, Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116349

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the substantial financial support provided by the General—Direction of Scientific Research and Technology Development (DGRSDT, MESRS, Algeria).

Author information

Authors and Affiliations

Authors

Contributions

A did the lab practice and wrote the manuscript. BEF performed and interpreted the physicochemical analyzes. C did an antibacterial activity in the lab. D corrected English and interpreted the DRX.

Corresponding author

Correspondence to Mohammed Amin Bezzekhami.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezzekhami, M.A., Belalia, M., Hamed, D. et al. Nanoarchitectonics of Starch Nanoparticles Rosin Catalyzed by Algerian Natural Montmorillonite (Maghnite-H+) for Enhanced Antimicrobial Activity. J Inorg Organomet Polym 33, 193–206 (2023). https://doi.org/10.1007/s10904-022-02490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02490-y

Keywords

Navigation