Skip to main content
Log in

Investigation of the Gas Separation Properties of Polyurethane Membranes in Presence of Boehmite Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, the effect of boehmite nanoparticles on the CO2, CH4, O2, and N2 permeability in polyurethane membranes was investigated. Boehmite nanoparticles were synthesized by the hydrothermal method using the salt of aluminum nitrate Al (NO3)3 and diethanolamine as a precipitating agent. Different temperatures (110, 160, and 200) °C and times (18–24 h) in synthesizing boehmite nanoparticles are also investigated. The characteristics of the synthesized nanoparticles were analyzed with X-ray diffraction (XRD), Field-emission scanning electron microscopy (FESEM), and Transmission electron microscopy (TEM). The analysis results represented that increasing the temperature to 200 °C as well as high duration time at this temperature (24 h) result in nanoparticles with high purity and high crystallinity. Polyurethane was synthesized by bulk two-step polymerization using hexamethylene diisocyanate (HMDI) and 1,4-butanediol (BDO) as hard segments and poly(tetramethylene glycol) (PTMG, 2,000 g/mol) as the soft segment. The synthesized polymer was in a molar ratio: PTMG: HMDI: BDO = 1:3:2. PU membranes and PU-boehmite nanocomposite membranes were prepared using solution casting and solvent evaporation technique. The characteristics of the synthesized nanocomposite membranes were analyzed with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field-emission scanning electron microscopy (FESEM), and differential scanning calorimetry (DSC). The results of characterization analyses indicated that there is a strong interaction between boehmite nanoparticles and polymer and also the appropriate distribution of boehmite nanoparticles in the prepared samples. Gas permeation properties of polyurethane—boehmite nanocomposite at different boehmite loadings (0, 5, 10, 15, and 20 wt.%) were studied for pure CO2, CH4, O2, and N2 gases at 8 bar and 30 °C. The obtained results indicated that the reduction in permeability of all gases but enhancement in CO2/N2, CO2/CH4, and O2/N2 selectivities were observed as boehmite content increases. In the membrane with 20 wt.% boehmite content, enhancement of CO2/N2 (65.33%) and CO2/CH4 (55.37%) selectivities were observed in comparison with pure polyurethane, while the CO2 permeability reduction of polyurethane–boehmite membranes was 22.08%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Vinh-Thang, S. Kaliaguine, Chem. Rev. 113(7), 4980 (2013)

    Article  CAS  Google Scholar 

  2. Y. Yampolskii, Macromolecules 45(8), 3298 (2012)

    Article  CAS  Google Scholar 

  3. B. Ghalei, A.P. Isfahani, S. Nilouyal, E. Vakili, M.K. Salooki, SILICON 11(3), 1451 (2019)

    Article  CAS  Google Scholar 

  4. J.O. Akindoyo, M.D. Beg, S. Ghazali, M. Islam, N. Jeyaratnam, A. Yuvaraj, RSC Adv. 6(115), 114453 (2016)

    Article  CAS  Google Scholar 

  5. A. Puszka, J.W. Sikora, Polymers 14(14), 2933 (2022)

  6. M. Sadeghi, M.A. Semsarzadeh, M. Barikani, M.P. Chenar, J. Membr. Sci. 376(1–2), 188 (2011)

    Article  CAS  Google Scholar 

  7. M. Sadeghi, H.T. Afarani, Z. Tarashi, Korean J Chem Eng. 32(1), 97 (2015)

    Article  CAS  Google Scholar 

  8. F. Dorosti, M. Omidkhah, R. Abedini, J Nat Gas Sci Eng. 25, 88 (2015)

    Article  CAS  Google Scholar 

  9. E.V. Perez, K.J. Balkus Jr., J.P. Ferraris, I.H. Musselman, J. Membr. Sci. 328(1–2), 165 (2009)

    Article  CAS  Google Scholar 

  10. N. Ali, A. Said, F. Ali, M. Khan, Z.A. Sheikh, M. Bilal, J Inorg Organomet Polym Mater. 30(11), 4585 (2020)

    Article  CAS  Google Scholar 

  11. M. Aida, N. Alonizan, M. Hussein, M. Hjiri, O. Abdelaziz, R. Attaf, B. Zarrad, J Inorg Organomet Polym Mater. 32(4), 1223 (2022)

    Article  CAS  Google Scholar 

  12. N. Jusoh, Y.F. Yeong, T.L. Chew, K.K. Lau, A.M. Shariff, Sep. Purif. Rev. 45(4), 321 (2016)

    Article  CAS  Google Scholar 

  13. M. Sadeghi, M.M. Talakesh, B. Ghalei, M. Shafiei, J. Membr. Sci. 427, 21 (2013)

    Article  CAS  Google Scholar 

  14. L.M.D. Santos, F.L. Bernard, I.S. Pinto, H. Scholer, G.G. Dias, M. Prado, S. Einloft, Mater. Res. (2019). https://doi.org/10.1590/1980-5373-mr-2019-0022

    Article  Google Scholar 

  15. A.P. Isfahani, B. Ghalei, R. Bagheri, Y. Kinoshita, H. Kitagawa, E. Sivaniah, M. Sadeghi, J. Membr. Sci. 513, 58 (2016)

    Article  CAS  Google Scholar 

  16. O. Malay, O. Oguz, C. Kosak, E. Yilgor, I. Yilgor, Y.Z. Menceloglu, Polymer 54(20), 5310 (2013)

    Article  CAS  Google Scholar 

  17. J. Yang, R.L. Frost, Res Lett Inorg Chem. 2008, 1–4 (2008)

    Google Scholar 

  18. C. Liu, K. Shih, Y. Gao, F. Li, L. Wei, J. Soils Sediments. 12(5), 724 (2012)

    Article  CAS  Google Scholar 

  19. M. Sadeghi, M.A. Semsarzadeh, M. Barikani, B. Ghalei, J. Membr. Sci. 385, 76 (2011)

    Article  Google Scholar 

  20. E. Ameri, M. Sadeghi, N. Zarei, A. Pournaghshband, J. Membr. Sci. 479, 11 (2015)

    Article  CAS  Google Scholar 

  21. A. Khosravi, M. Sadeghi, H.Z. Banadkohi, M.M. Talakesh, Ind. Eng. Chem. Res. 53(5), 2011 (2014)

    Article  CAS  Google Scholar 

  22. M. Azari, M. Sadeghi, M. Aroon, T. Matsuura, J. Membr. Sci. Res. 5(1), 33 (2019)

    Google Scholar 

  23. C. Wang, C. Ma, C. Mu, W. Lin, Rsc Adv. 7(44), 27522 (2017)

    Article  CAS  Google Scholar 

  24. L. Wang, Y. Shen, X. Lai, Z. Li, M. Liu, J. Polym. Res. 18(3), 469 (2011)

    Article  CAS  Google Scholar 

  25. I. Tirouni, M. Sadeghi, M. Pakizeh, Sep. Purif. Technol. 141, 394 (2015)

    Article  CAS  Google Scholar 

  26. W. Higuchi, J. Phys. Chem. A. 62(6), 649 (1958)

    Article  CAS  Google Scholar 

  27. S.A. Mousavi, M. Sadeghi, M.M.Y. Motamed-Hashemi, M.P. Chenar, R. Roosta-Azad, M. Sadeghi, Sep. Purif. Technol. 62(3), 642 (2008)

    Article  CAS  Google Scholar 

  28. M. Sadeghi, M.A. Semsarzadeh, H. Moadel, J. Membr. Sci. 331(1–2), 21 (2009)

    Article  CAS  Google Scholar 

  29. M.A. Semsarzadeh, M. Sadeghi, M. Barikani, Iran. Polym. J. 16(12), 819–827 (2007)

    Google Scholar 

  30. M. Moaddeb, W.J. Koros, J. Membr. Sci. 125(1), 143 (1997)

    Article  CAS  Google Scholar 

  31. T.W. Pechar, Ph.D. thesis, Virginia Tech, Blacksburg, 2004

  32. M. Sadeghi, M.A. Semsarzadeh, M. Barikani, B. Ghalei, J. Membr. Sci. 354(1–2), 40 (2010)

    Article  CAS  Google Scholar 

  33. L.M. Robeson, J. Membr. Sci. 320(1–2), 390 (2008)

    Article  CAS  Google Scholar 

  34. S. Hassanajili, E. Masoudi, G. Karimi, M. Khademi, Sep. Purif. Technol. 116, 1 (2013)

    Article  CAS  Google Scholar 

  35. N. Azizi, M. Isanejad, T. Mohammadi, R.M. Behbahani, Front Chem Sci Eng. 13(3), 517 (2019)

    Article  CAS  Google Scholar 

  36. G. Sodeifian, M. Raji, M. Asghari, M. Rezakazemi, A. Dashti, Chin. J. Chem. Eng. 27(2), 322 (2019)

    Article  CAS  Google Scholar 

  37. B. Ghalei, A. Pournaghshband Isfahani, M. Sadeghi, E. Vakili, A. Jalili, Polym. Adv. Technol. 29(2), 874 (2018)

    Article  CAS  Google Scholar 

  38. H.T. Afarani, M. Sadeghi, A. Moheb, Adv. Polym. Technol. 37(2), 339 (2018)

    Article  CAS  Google Scholar 

  39. M.H. Nematollahi, S. Babaei, R. Abedini, Korean J Chem Eng. 36(5), 763 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by somayeh tourani and fatemeh akbarbandari. The first draft of the manuscript was written by somayeh tourani and all authors commented on revised versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Tourani.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tourani, S., Akbarbandari, F. Investigation of the Gas Separation Properties of Polyurethane Membranes in Presence of Boehmite Nanoparticles. J Inorg Organomet Polym 33, 61–75 (2023). https://doi.org/10.1007/s10904-022-02480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02480-0

Keywords

Navigation