Skip to main content
Log in

The Vital Role of TiO2 on the Bioglass System P2O5-CaO-B2O3-SiO2- K2O for Optics and Shielding Characteristics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Using the melt-quenching methodology, bioglass samples manufactured of 28B2O3–14SiO2–15CaO–18 –18 P2O5 –25−x K2O − x TiO2, \(x\) = (0 ≤ \(x\)  ≤ 5 mol. %) were prepared for use as optics and shields. According to the Ti content values, the investigated samples were labelled as CPBKSTi0, CPBKSTi1, CPBKSTi2, CPBKSTi3, & CPBKSTi5. The addition of TiO2 increased the density (ρ), while lowering the molar volume (\({V}_{m}\)). The optical bandgap (\({E}_{opt.}^{indir})\)& (\({E}_{opt.}^{dir}),\) the Urbach energy (\({E}_{u}\)), the refractive index, (\({n}_{D}\)), and other features of the glass system were calculated using the UV–VIS–NIR spectrum. Radiation shielding parameters like half -value layer, mass attenuation coefficient, mean free path, and effective atomic number were calculated, indicating that adding TiO2 improved the attenuation performance of these glasses Cosmetic, dental prosthetics, and orthopedic implants are just a few of the applications for the current glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

My manuscript and associated personal data.

References

  1. M.S. Al-Buriahi, Z.A. Alrowaili, C. Eke, S. Alomairy, B. Alshahrani, I. Bejaoui, C. Sriwunkum, An important role of Ba2+, Sr2+, Mg2+, and Zn2+ in the radiation attenuation performance of CFCBPC bioactive glasses. J. Aust. Ceram. Soc. (2022). https://doi.org/10.1007/s41779-022-00704-7

    Article  Google Scholar 

  2. K.S. Shaaban, B.M. Alotaibi, N. Alharbi, Z.A. Alrowaili, M.S. Al-Buriahi, S.A. Makhlouf, A.F. Abd El-Rehim, Physical, optical, and radiation characteristics of bioactive glasses for dental prosthetics and orthopaedic implants applications. Radiat. Phys. Chem. (2022). https://doi.org/10.1016/j.radphyschem.2022.109995

    Article  Google Scholar 

  3. S.P. Ghorbanzade Zaferani, N. Nabian, M. Delavar, S.M. Rabiee, Novel Methods for Adding Metal Oxides Nanoparticles to Bioactive Glass 58S Matrix: A Characterization and Bioactivity Evaluation Study. SILICON (2021). https://doi.org/10.1007/s12633-021-01487-5

    Article  Google Scholar 

  4. S.P. Ghorbanzade Zaferani, N. Nabian, M. Delavar, S.M. Rabiee, Direct Impregnation of MgO Nanoparticles in 58S Bioactive Glass: Bioactivity Evaluation and Antibacterial Activity. Iranian J. Sci. Technol. Trans. A: Sci 45(3), 885–898 (2021). https://doi.org/10.1007/s40995-021-01103-6

    Article  Google Scholar 

  5. O. Saneei Siavashy, N. Nabian, S.M. Rabiee, Titanium Dioxide Nanotubes Incorporated Bioactive Glass Nanocomposites: Synthesis, Characterization, Bioactivity Evaluation and Drug Loading. Int. J. Eng. (2021). https://doi.org/10.5829/ije.2021.34.01a.01

    Article  Google Scholar 

  6. A. Moghanian, S. Nasiripour, Z. Miri, Z. Hajifathali, S.H. Hosseini, M. Sajjadnejad, R. Aghabarari, N. Nankali, A.K. Miri, M. Tahriri, Structural and in vitro biological evaluation of sol-gel derived multifunctional Ti+4/Sr+2 co-doped bioactive glass with enhanced properties for bone healing. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.07.113

    Article  Google Scholar 

  7. A. Moghanian, A. Koohfar, S. Hosseini, S.H. Hosseini, A. Ghorbanoghli, M. Sajjadnejad, M. Raz, M. Elsa, F. Sharifianjazi, Synthesis, characterization and in vitro biological properties of simultaneous co-substituted Ti+4/Li+1 58s bioactive glass. J. Non-Cryst. Solids 561, 120740 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120740

    Article  CAS  Google Scholar 

  8. M. Rahmani, A. Moghanian, M. Saghafi Yazdi, Synthesis and characterization of in vitro properties and biological behavior of Ag/Li co-doped 68S bioactive glass with and without phosphate. J. Non-Cryst. Solids 570, 121015 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121015

    Article  CAS  Google Scholar 

  9. A. Moghanian, S. Nasiripour, A. Koohfar, M. Sajjadnejad, S. Hosseini, M. Taherkhani, Z. Miri, S.H. Hosseini, M. Aminitabar, A. Rashvand, Characterization, in vitro bioactivity and biological studies of sol-gel-derived TiO2 substituted 58S bioactive glass. Int. J. Appl. Ceram. Technol. (2021). https://doi.org/10.1111/ijac.13782

    Article  Google Scholar 

  10. K.S. Shaaban, S. Alomairy, M.S. Al-Buriahi, Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J. Mater. Sci.: Mater. Electron. 32, 26034–26048 (2021). https://doi.org/10.1007/s10854-021-05885-8

    Article  CAS  Google Scholar 

  11. X. Yang, L. Zhang, X. Chen, X. Sun, G. Yang, X. Guo, H. Yang, C. Gao, Z. Gou, Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J. Non-Cryst. Solids 358(9), 1171–1179 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.02.005

    Article  CAS  Google Scholar 

  12. A. Saranti, I. Koutselas, M.A. Karakassides, Bioactive glasses in the system CaO–B2O3–P2O5: Preparation, structural study and in vitro evaluation. J. Non-Cryst. Solids 352(5), 390–398 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.042

    Article  CAS  Google Scholar 

  13. A.F.A. El-Rehim, K.S. Shaaban, Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J. Mater. Sci.: Mater. Electron. 32, 4651–4671 (2021). https://doi.org/10.1007/s10854-020-05204-7

    Article  CAS  Google Scholar 

  14. A.F.A. El-Rehim, K.S. Shaaban, H.Y. Zahran, I.S. Yahia, A.M. Ali, M.M.A. Halaka, S.A. Makhlouf, E.A.A. Wahab, E.R. Shaaban, Structural and Mechanical Properties of Lithium Bismuth Borate Glasses Containing Molybdenum (LBBM) Together with their Glass-Ceramics. J. Inorg. Organomet. Polym Mater. 31, 1057–1065 (2021). https://doi.org/10.1007/s10904-020-01708-1

    Article  CAS  Google Scholar 

  15. A.F.A. El-Rehim, H.Y. Zahran, I.S. Yahia, E.A.A. Wahab, K.S. Shaaban, Structural, Elastic Moduli, and Radiation Shielding of SiO2-TiO2-La2O3-Na2O Glasses Containing Y2O3. J. Mater. Eng. Perform. 30, 1872–1884 (2021). https://doi.org/10.1007/s11665-021-05513-w

    Article  CAS  Google Scholar 

  16. M.S.I. Koubisy, K.S. Shaaban, E.A.A. Wahab, M.I. Sayyed, K.A. Mahmoud, Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48 + X) Na2B4O7–(2 − X) MnO2 glasses. The European Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01125-4

    Article  Google Scholar 

  17. K.S. Shaaban, A.M. Al-Baradi, A.M. Ali, The Impact of Cr2O3 on the Mechanical, Physical, and Radiation Shielding Characteristics of Na2B4O7–CaO–SiO2 Glasses. SILICON (2022). https://doi.org/10.1007/s12633-022-01783-8

    Article  Google Scholar 

  18. K.S. Shaaban, A.M. Al-Baradi, A.M. Ali, Gamma-ray shielding and mechanical characteristics of iron-doped lead phosphosilicate glasses. SILICON (2022). https://doi.org/10.1007/s12633-022-01702-x

    Article  Google Scholar 

  19. Y.S. Rammah, F.I. El-Agawany, E.A.A. Wahab, M.M. Hessien, K. Shaaban, Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiat. Phys. Chem. (2022). https://doi.org/10.1016/j.radphyschem.2021.109956

    Article  Google Scholar 

  20. E.A. Abdel Wahab, A.A. El-Maaref, K.S. Shaaban, J. Börcsök, M. Abdelawwad, Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications. Opt. Mater. 110638 (2020). https://doi.org/10.1016/j.optmat.2020.110638

  21. E.A. Abdel Wahab, K.S. Shaaban, S. Alomairy, M.S. Al-Buriahi, Electronegativity and optical basicity of glasses containing Na/Pb/B and their high performance for radiation applications: role of ZrO2 nanoparticles. European Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01572-z

    Article  Google Scholar 

  22. K.H. Mahmoud, A.S. Alsubaie, E.A.A. Wahab, F.M. Abdel-Rahim, K.S. Shaaban, Research on the Effects of Yttrium on Bismuth Titanate Borosilicate Glass System. SILICON 14, 3419–3427 (2022). https://doi.org/10.1007/s12633-021-01125-0

    Article  CAS  Google Scholar 

  23. K.S. Shaaban, A.M. Al-Baradi, A.M. Ali, B.M. Alotaibi, Thermal, optical, and gamma/ neutron radiation absorption of PbO - P2O5 –SiO2 - Na2O - Fe2O3 glasses. J. Market. Res. 18, 1909–1921 (2022). https://doi.org/10.1016/j.jmrt.2022.03.090

    Article  CAS  Google Scholar 

  24. A.A. El-Maaref, E.A.A. Wahab, K.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef, Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 242, 118774 (2020). https://doi.org/10.1016/j.saa.2020.118774

    Article  CAS  Google Scholar 

  25. A.A. El-Maaref, E.A.A. Wahab, K.S. Shaaban, R.M. El-Agmy, Enhancement of spectroscopic parameters of Er3+-doped cadmium lithium gadolinium silicate glasses as an active medium for lasers and optical amplifiers in the NIR-region. Solid State Sci. 113, 106539 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106539

    Article  CAS  Google Scholar 

  26. K.H. Mahmoud, A.S. Alsubaie, E.A.A. Wahab, F.M. Abdel-Rahim, K.S. Shaaban, Research on the Effects of Yttrium on Bismuth Titanate Borosilicate Glass System. SILICON (2021). https://doi.org/10.1007/s12633-021-01125-0

    Article  Google Scholar 

  27. S. Alomairy, M.S. Al-Buriahi, E.A. Abdel Wahab, C. Sriwunkum, K. Shaaban, Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram. Int. 47(12), 17322–17330 (2021). https://doi.org/10.1016/j.ceramint.2021.03.045

    Article  CAS  Google Scholar 

  28. K.S. Shaaban, I. Boukhris, I. Kebaili, M.S. Al-Buriahi, Spectroscopic and Attenuation Shielding Studies on B2O3-SiO2-LiF-ZnO-TiO2 Glasses. SILICON (2021). https://doi.org/10.1007/s12633-021-01080-w

    Article  Google Scholar 

  29. E.A. Abdel Wahab, A.A. El-Maaref, K.S. Shaaban, J. Börcsök, M. Abdelawwad, Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications. Opt. Mater. 111, 110638 (2021). https://doi.org/10.1016/j.optmat.2020.110638

    Article  CAS  Google Scholar 

  30. A.M. Fayad, K.S. Shaaban, W.M. Abd-Allah, M. Ouis, Structural and Optical Study of CoO Doping in Borophosphate Host Glass and Effect of Gamma Irradiation. J. Inorg. Organomet. Polym Mater. 30, 5042–5052 (2020). https://doi.org/10.1007/s10904-020-01641-3

    Article  CAS  Google Scholar 

  31. A.F.A. El-Rehim, H.Y. Zahran, I.S. Yahia, A.M. Ali, K.S. Shaaban, Physical, Radiation Shielding and Crystallization Properties of Na2O-Bi2O3- MoO3-B2O3- SiO2-Fe2O3 Glasses. SILICON (2020). https://doi.org/10.1007/s12633-020-00827-1

    Article  Google Scholar 

  32. A.F.A. El-Rehim, H.Y. Zahran, I.S. Yahia, S.A. Makhlouf, K.S. Shaaban, Radiation, Crystallization, and Physical Properties of Cadmium Borate Glasses. SILICON 13, 2289–2307 (2021). https://doi.org/10.1007/s12633-020-00798-3

    Article  CAS  Google Scholar 

  33. A.A. El-Maaref, R.M. El-Agmy, K.S. Shaaban, E.A. Abdel Wahab, Optical and spectroscopic study of Nd2O3-doped SBN glass in the near-infrared, visible and UV regions under pumping up-conversion emissions. European Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01798-x

    Article  Google Scholar 

  34. K.S. Shaaban, A.M. Al-Baradi, E.A.A. Wahab, The Impact of Y2O3 on Physical and Optical Characteristics, Polarizability, Optical Basicity, and Dispersion Parameters of B2O3 – SiO2 – Bi2O3 – TiO2 Glasses. SILICON (2021). https://doi.org/10.1007/s12633-021-01309-8

    Article  Google Scholar 

  35. M.A. Sayed, A.M. Ali, A.F. Abd El-Rehim, E.A. Abdel Wahab, K.S. Shaaban, Dispersion Parameters, Polarizability, and Basicity of Lithium Phosphate Glasses. J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-08921-9

    Article  Google Scholar 

  36. A.A. El-Maaref, S. Badr, K.S. Shaaban, E.A. Abdel Wahab, M.M. Elokr, Optical properties and radiative rates of Nd3+ doped zinc-sodium phosphate glasses. J. Rare Earths 37, 253–259 (2019). https://doi.org/10.1016/j.jre.2018.06.006

    Article  CAS  Google Scholar 

  37. K.S. Shaaban, E.S. Yousef, S.A. Mahmoud, E.A.A. Wahab, E.R. Shaaban, Mechanical, Structural and Crystallization Properties in Titanate Doped Phosphate Glasses. J. Inorg. Organomet. Polym Mater. 30, 4655–4663 (2020). https://doi.org/10.1007/s10904-020-01574-x

    Article  CAS  Google Scholar 

  38. K.S. Shaaban, A.M. Al-Baradi, A.M. Ali, Physical, optical, and advanced radiation absorption characteristics of cadmium lead phosphate glasses containing MoO3. J. Mater. Sci.: Mater. Electron. 33(6), 3297–3305 (2022). https://doi.org/10.1007/s10854-021-07530-w

    Article  CAS  Google Scholar 

  39. K.S. Shaaban, A.M. Al-Baradi, A.M. Ali, Investigation of BaO reinforced TiO2–p2O5–li2O glasses for optical and neutron shielding applications. RSC Adv. 12(5), 3036–3043 (2022). https://doi.org/10.1039/d2ra00171c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E.A.A. Wahab, A.M. Al-Baradi, M.A. Sayed, A.M. Ali, S.A. Makhlouf, K.S. Shaaban, Crystallization and Radiation Proficiency of Transparent Sodium Silicate Glass Doped Zirconia. SILICON (2022). https://doi.org/10.1007/s12633-021-01652-w

    Article  Google Scholar 

  41. A.F.A. El-Rehim, K.S. Shaaban, H.Y. Zahran, I.S. Yahia, A.M. Ali, M.M.A. Halaka, S.A. Makhlouf, E.A.A., Wahab, E.R. Shaaban, Structural and Mechanical Properties of Lithium Bismuth Borate Glasses Containing Molybdenum (LBBM) Together with their Glass–Ceramics. J. Inorg. Organomet. Polym. Mater. 31, 1057–1065 (2021). https://doi.org/10.1007/s10904-020-01708-1

  42. K.S. Shaaban, H.Y. Zahran, I.S. Yahia, H.I. Elsaeedy, E.R. Shaaban, S.A. Makhlouf, E.A.A. Wahab, E.S. Yousef, Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03982-9

    Article  Google Scholar 

  43. Z.A. Alrowaili, A.M. Ali, A.M. Al-Baradi, M.S. Al-Buriahi, E.A.A. Wahab, K.S. Shaaban, A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-021-03447-0

    Article  Google Scholar 

  44. A.M. Al-Baradi, A.F.A. El-Rehim, Z.A. Alrowaili, M.S. Al-Buriahi, K.S. Shaaban, FT-IR and Gamma Shielding Characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5–x) LiF- x BaO Glasses. SILICON (2021). https://doi.org/10.1007/s12633-021-01481-x

    Article  Google Scholar 

  45. M.S.I. Koubisy, K.S. Shaaban, E.A.A. Wahab, M.I. Sayyed, K.A. Mahmoud, Synthesis, structure, mechanical and radiation shielding features of 50SiO2– (48 + X) Na2B4O7–(2 − X) MnO2 glasses. European. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01125-4

    Article  Google Scholar 

  46. K.S. Shaaban, S. Alomairy, M.S. Al-Buriahi, Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05885-8

    Article  Google Scholar 

  47. M.A. Alothman, Z.A. Alrowaili, J.S. Alzahrani, E.A.A. Wahab, I.O. Olarinoye, C. Sriwunkum, K.S. Shaaban, M.S. Al-Buriahi, Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. J. Alloy. Compd. 882, 160625 (2021). https://doi.org/10.1016/j.jallcom.2021.160625

    Article  CAS  Google Scholar 

  48. S. Alomairy, Z.A. Alrowaili, I. Kebaili, E.A.A. Wahab, C. Mutuwong, M.S. Al-Buriahi, K.S. Shaaban, Synthesis of Pb3O4-SiO2-ZnO-WO3 Glasses and their Fundamental Properties for Gamma Shielding Applications. SILICON (2021). https://doi.org/10.1007/s12633-021-01347-2

    Article  Google Scholar 

  49. A.F.A. El-Rehim, A.M. Ali, H.Y. Zahran, I.S. Yahia, K.S. Shaaban, Spectroscopic, Structural, Thermal, and Mechanical Properties of B2O3-CeO2-PbO2 Glasses. J. Inorg. Organomet. Polym Mater. 31, 1774–1786 (2021). https://doi.org/10.1007/s10904-020-01799-w

    Article  CAS  Google Scholar 

  50. S. Alomairy, A.M. Aboraia, E.R. Shaaban, K.S. Shaaban, Comparative Studies on Spectroscopic and Crystallization Properties of Al2O3 -Li2O- B2O3-TiO2 Glasses. Braz. J. Phys. 51, 1237–1248 (2021). https://doi.org/10.1007/s13538-021-00928-1

    Article  CAS  Google Scholar 

  51. A.M. Ali, Z.A. Alrowaili, A.M. Al-Baradi, M.S. Al-Buriahi, E.A.A. Wahab, K.S. Shaaban, A Study of Thermal, and Optical Properties of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5–x) LiF- x BaO Glasses. SILICON (2021). https://doi.org/10.1007/s12633-021-01440-6

    Article  Google Scholar 

  52. K.S. Shaaban, Z.A. Alrowaili, A.M. Al-Baradi, A.M. Ali, E.A.A. Wahab, M.S. Al-Buriahi, Mechanical and Thermodynamic Characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5–x) LiF- x BaO Glasses. SILICON (2021). https://doi.org/10.1007/s12633-021-01441-5

    Article  Google Scholar 

  53. Y.B. Saddeek, K.A. Aly, K.S. Shaaban, A.M. Ali, M.A. Sayed, The Effect of TiO2 on the Optical and Mechanical Properties of Heavy Metal Oxide Borosilicate Glasses. SILICON 11, 1253–1260 (2019). https://doi.org/10.1007/s12633-018-9912-2

    Article  CAS  Google Scholar 

  54. K.H.S. Shaaban, Y.B. Saddeek, K. Aly, Physical properties of pseudo quaternary Na2B4O7 – SiO2 – MoO3 – Dy2O3 glasses. Ceram. Int. 44(4), 3862–3867 (2018). https://doi.org/10.1016/j.ceramint.2017.11.175

    Article  CAS  Google Scholar 

  55. Z.A. Alrowaili, A.M. Al-Baradi, M.A. Sayed, A. Mossad Ali, E.A. Abdel Wahab, M.S. Al-Buriahi, K.S. Shaaban, The impact of Fe2O3 on the dispersion parameters and gamma/fast neutron shielding characteristics of lithium borosilicate glasses. Optik 249, 168259 (2022). https://doi.org/10.1016/j.ijleo.2021.168259

    Article  CAS  Google Scholar 

  56. E.A. Abdel Wahab, K.S. Shaaban, Structural and optical features of aluminum lead borate glass doped with Fe2O3. Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-05062-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R32), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. A.F. Abd El-Rehim extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/60/43.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors have taken full responsibility for the content of this manuscript.

Corresponding author

Correspondence to Kh. S. Shaaban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The manuscript has not been published elsewhere.

Consent to Participate

The author's consent to participate & publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Alyousef, H.A., Alotaibi, B.M. et al. The Vital Role of TiO2 on the Bioglass System P2O5-CaO-B2O3-SiO2- K2O for Optics and Shielding Characteristics. J Inorg Organomet Polym 32, 4295–4303 (2022). https://doi.org/10.1007/s10904-022-02446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02446-2

Keywords

Navigation