Abstract
Short-chain olefins are the important feedstock for the chemical industries. The selection of a proper catalyst for oxidative dehydrogenation (ODH) reaction is critical. Here, the study summarized different catalysts by physicochemical techniques such as BET surface area, Raman spectroscopy, and temperature programmed reduction (TPR). The BET analysis of different catalysts gives an optimum value of active and metal loading catalysts for optimum alkenes selectivity. From different Raman spectroscopy analyses, the study pointed out the factor responsible for varying mono vanadate and poly vanadate formation. From TPR analysis of different catalysts, this study pointed out the factors that varied on increasing or decreasing temperature and the effect on the selectivity of alkenes. The effect of different operating conditions was studied. Without catalyst regeneration after each ODH run, the catalyst under the study shows stable behavior and increases the selectivity of the desired product. The CREC riser simulator was used for ODH of propane and ethane, while two zones of fluidized bed reactor (TZFBR) and ICFBR reactors were used for ODH of butane. From the study of MoO3/MgO catalyst, it was observed that TZFBR have high selectivity of butadiene than CFBR and fixed bed reactor. It was concluded that the catalyst VOx–Nb/La-ɣAl2O3 has high conversion (20.1%) of ethane and good selectivity of (85.7%) of ethylene, while in ODH of propane and butane the catalyst 7.5 VOx/ɣAl2O3·ZrO2 (1:1) and MoO3/MgO have high selectivity of propane and 1,3-butadiene respectively. This review will help researchers in decision making for the selection of proper catalyst for ODH of alkane to alkenes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- ODH:
-
Oxidative dehydrogenation
- TPR:
-
Temperature programmed reduction
- TZFBR:
-
Two zones of fluidized bed reactor
- MMO:
-
Mixed metallic oxide
- FCC:
-
Fluidized catalytic cracking
- BET:
-
Brunauer–Emmett–Teller
References
C.W.S. Yeung, J.Y.Q. Teo, X.J. Loh, J.Y.C. Lim, Polyolefins and polystyrene as chemical resources for a sustainable future: challenges, advances, and prospects. ACS Mater. Lett. 3(12), 1660–1676 (2021). https://doi.org/10.1021/acsmaterialslett.1c00490
S. Najari et al., Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chem. Soc. Rev. 50(7), 4564–4605 (2021). https://doi.org/10.1039/d0cs01518k
A.H. Assen et al., Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127388
N. Tripathi, Q. Xu, S. Palanki, Modeling and simulation of the 1,3-butadiene extraction process at turndown capacity. Chem. Eng. Technol. 42(12), 2649–2657 (2019). https://doi.org/10.1002/ceat.201900019
M. Bender, An overview of industrial processes for the production of olefins—C4 hydrocarbons. ChemBioEng Rev. 1(4), 136–147 (2014). https://doi.org/10.1002/cben.201400016
J.H. Carter et al., Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green Chem. 23(24), 9747–9799 (2021). https://doi.org/10.1039/d1gc03700e
M. Fakhroleslam, S.M. Sadrameli, Thermal cracking of hydrocarbons for the production of light olefins; A review on optimal process design, operation, and control. Ind. Eng. Chem. Res. 59(27), 12288–12303 (2020). https://doi.org/10.1021/acs.iecr.0c00923
M. Fakhroleslam, S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins; a state-of-the-art review III: process modeling and simulation. Fuel 252(April), 553–566 (2019). https://doi.org/10.1016/j.fuel.2019.04.127
A.N. Matveyeva et al., Fluidized-bed isobutane dehydrogenation over alumina-supported Ga2O3 and Ga2O3–Cr2O3 catalysts. Ind. Eng. Chem. Res. 57(3), 927–938 (2018). https://doi.org/10.1021/acs.iecr.7b04571
Z. Nawaz, Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev. Chem. Eng. 31(5), 413–436 (2015). https://doi.org/10.1515/revce-2015-0012
M. Mubashir, Y.F. Yeong, N.S. Binti Mohamed Nazri, K.K. Lau, Accelerated synthesis of deca-dodecasil 3 rhombohedral (DDR3) zeolite crystals via hydrothermal growth coupled with ultrasonic irradiation method. RSC Adv. 5(1–2), 22658–22664 (2015). https://doi.org/10.1039/C5RA00009B
M. Munir et al., A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresour. Technol. 328, 124859 (2021). https://doi.org/10.1016/j.biortech.2021.124859
S. Wang, Z.H. Zhu, Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation—a review. Energy Fuels 18(4), 1126–1139 (2004). https://doi.org/10.1021/ef0340716
H.G. Lintz, A. Reitzmann, Alternative reaction engineering concepts in partial oxidations on oxidic catalysts. Catal. Rev. Sci. Eng. 49(1), 1–32 (2007). https://doi.org/10.1080/01614940600983467
F. Cavani, N. Ballarini, A. Cericola, Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal. Today 127(1–4), 113–131 (2007). https://doi.org/10.1016/J.CATTOD.2007.05.009
C. De, A. Holmen, Z. Sui, X. Zhou, Carbon mediated catalysis: a review on oxidative dehydrogenation. Cuihua Xuebao 35(6), 824–841 (2014). https://doi.org/10.1016/s1872-2067(14)60120-0
I.A. Bakare, S.A. Mohamed, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H.I. De Lasa, Fluidized bed ODH of ethane to ethylene over VOx–MoOx/γ-Al2O3 catalyst: desorption kinetics and catalytic activity. Chem. Eng. J. 278, 207–216 (2015). https://doi.org/10.1016/j.cej.2014.09.114
L.M. Madeira, M.F. Portela, Catalytic oxidative dehydrogenation of n-butane. Catal. Rev. 44(2), 247–286 (2002). https://doi.org/10.1081/CR-120001461
F. Cavani, J.H. Teles, Sustainability in catalytic oxidation: an alternative approach or a structural evolution? Chemsuschem 2(6), 508–534 (2009). https://doi.org/10.1002/cssc.200900020
Y. Gambo et al., CO2-mediated oxidative dehydrogenation of light alkanes to olefins: advances and perspectives in catalyst design and process improvement. Appl. Catal. A (2021). https://doi.org/10.1016/j.apcata.2021.118273
E.A. De Graaf, A. Andreini, E.J.M. Hensen, A. Bliek, Selective hydrogen oxidation in a mixture with ethane/ethene using cerium zirconium oxide. Appl. Catal. A 262(2), 201–206 (2004). https://doi.org/10.1016/j.apcata.2003.11.027
J. Soler, C. Tellez, J. Herguido, M. Menendez, J. Santamarıa, Modelling of a two-zone fluidised bed reactor for the oxidative dehydrogenation of n-butane. Powder Technol. 120, 88–96 (2001)
M.L. Rodríguez, D.E. Ardissone, E. López, M.N. Pedernera, D.O. Borio, Reactor designs for ethylene production via ethane oxidative dehydrogenation: comparison of performance. Ind. Eng. Chem. Res. 50(5), 2690–2697 (2011). https://doi.org/10.1021/ie100738q
M.L. Rodriguez et al., Oxidative dehydrogenation of ethane to ethylene in a membrane reactor: a theoretical study. Catal. Today 157(1–4), 303–309 (2010). https://doi.org/10.1016/j.cattod.2010.01.053
F. Dons̀, R. Pirone, G. Russo, Catalyst investigation for applications of oxidative dehydrogenation of ethane in short contact time reactors. Catal. Today 91–92, 285–288 (2004). https://doi.org/10.1016/j.cattod.2004.03.045
A. Beretta, E. Ranzi, P. Forzatti, Oxidative dehydrogenation of light parafins in novel short contact time reactors. Experimental and theoretical investigation. Chem. Eng. Sci. 56, 779–787 (2001). https://doi.org/10.1016/S0009-2509(00)00289-X
C. Hamel, T. Wolff, P. Subramaniam, A. Seidel-Morgenstern, Multicomponent dosing in membrane reactors including recycling-concept and demonstration for the oxidative dehydrogenation of propane. Ind. Eng. Chem. Res. 50(23), 12895–12903 (2011). https://doi.org/10.1021/ie2001692
V.A. Vavilin, B. Fernandez, J. Palatsi, X. Flotats, Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag. 28(6), 939–951 (2008). https://doi.org/10.1016/j.wasman.2007.03.028
M.P. Lobera, S. Valero, J.M. Serra, S. Escolástico, E. Argente, V. Botti, Optimization of ODHE membrane reactor based on mixed ionic electronic conductor using soft computing techniques. Chem. Eng. Sci. 66(24), 6308–6317 (2011). https://doi.org/10.1016/j.ces.2010.12.013
D. Milne, T. Seodigeng, D. Glasser, D. Hildebrandt, B. Hausberger, The oxidative dehydrogenation of n-butane in a differential side-stream catalytic membrane reactor. Catal. Today 156(3–4), 237–245 (2010). https://doi.org/10.1016/j.cattod.2010.03.033
M.E. Adrover, E. López, D.O. Borio, M.N. Pedernera, Simulation of a membrane reactor for the WGS reaction: pressure and thermal effects. Chem. Eng. J. 154(1–3), 196–202 (2009). https://doi.org/10.1016/j.cej.2009.04.057
C. Hamel, Á. Tóta, F. Klose, E. Tsotsas, A. Seidel-Morgenstern, Analysis of single and multi-stage membrane reactors for the oxidation of short-chain alkanes—simulation study and pilot scale experiments. Chem. Eng. Res. Des. 86(7), 753–764 (2008). https://doi.org/10.1016/j.cherd.2008.03.025
D. Milne, D. Glasser, D. Hildebrandt, B. Hausberger, The oxidative dehydrogenation of n-butane in a fixed-bed reactor and in an inert porous membrane reactor-maximizing the production of butenes and butadiene. Ind. Eng. Chem. Res. 45(8), 2661–2671 (2006). https://doi.org/10.1021/ie050120l
D. Ahchieva, M. Peglow, S. Heinrich, L. Mörl, T. Wolff, F. Klose, Oxidative dehydrogenation of ethane in a fluidized bed membrane reactor. Appl. Catal. A 296(2), 176–185 (2005). https://doi.org/10.1016/j.apcata.2005.07.040
A.A. Lemonidou, M. Machli, Oxidative dehydrogenation of propane over V2O5–MgO/TiO2 catalyst. Effect of reactants contact mode. Catal. Today 127(1–4), 132–138 (2007). https://doi.org/10.1016/j.cattod.2007.05.022
N. Steinfeldt, N. Dropka, D. Wolf, M. Baerns, Application of multichannel microreactors for studying heterogeneous catalysed gas phase reactions. Chem. Eng. Res. Des. 81(7), 735–743 (2003). https://doi.org/10.1205/026387603322302904
G. Eigenberger, W. Ruppel, Catalytic fixed-bed reactors. Ullmann’s Encycl. Ind. Chem. (2012). https://doi.org/10.1002/14356007.b04_199.pub2
M.Y. Khan, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H. de Lasa, Fluidized bed oxidative dehydrogenation of ethane to ethylene over VOx/Ce-γAl2O3 catalysts: reduction kinetics and catalyst activity. Mol. Catal. 443, 78–91 (2017). https://doi.org/10.1016/j.mcat.2017.09.025
X. Chen, D. Dang, H. An, B. Chu, Y. Cheng, MnOx promoted phase-pure M1 MoVNbTe oxide for ethane oxidative dehydrogenation. J. Taiwan Inst. Chem. Eng. 95, 103–111 (2019). https://doi.org/10.1016/j.jtice.2018.10.004
A.A.H. Elbadawi, M.S. Ba-Shammakh, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H.I. de Lasa, A fluidizable VOx/γ-Al2O3-ZrO2 catalyst for the ODH of ethane to ethylene operating in a gas phase oxygen free environment. Chem. Eng. Sci. 145, 59–70 (2016). https://doi.org/10.1016/j.ces.2016.01.050
S. Boullosa-Eiras, E. Vanhaecke, T. Zhao, D. Chen, A. Holmen, Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2–Al2O3 and CeO2–Al2O3 nanocomposites. Catal. Today 166(1), 10–17 (2011). https://doi.org/10.1016/j.cattod.2010.05.038
M. Mubashir, Y.Y. Fong, L.K. Keong, M. Azmi Bin Sharrif, Synthesis and performance of deca-dodecasil 3 rhombohedral (DDR)-type zeolite membrane in CO2 separation—a review. ASEAN J. Chem. Eng. 14(2), 48–57 (2014). https://doi.org/10.22146/ajche.49708
M. Mubashir, Y.F. Yeong, L.K. Keong, Methods comparison for the synthesis of deca-dodecasil 3 rhombohedral (DDR3) zeolite crystals. Appl. Mech. Mater. 773–774, 1096–1100 (2015). https://doi.org/10.4028/www.scientific.net/AMM.773-774.1096
I.E. Wachs, Catalysis science of supported vanadium oxide catalysts. Dalton Trans. 42(33), 11762–11769 (2013). https://doi.org/10.1039/c3dt50692d
S. Sokolov, M. Stoyanova, U. Rodemerck, D. Linke, E.V. Kondratenko, Comparative study of propane dehydrogenation over V-, Cr-, and Pt-based catalysts: time on-stream behavior and origins of deactivation. J. Catal. 293, 67–75 (2012). https://doi.org/10.1016/j.jcat.2012.06.005
I.E. Wachs, B.M. Weckhuysen, Structure and reactivity of surface vanadium oxide species on oxide supports. Appl. Catal. A 157(1–2), 67–90 (1997). https://doi.org/10.1016/S0926-860X(97)00021-5
A.A.H. Elbadawi, M.S. Osman, S.A. Razzak, M.M. Hossain, VOx–Nb/La-γAl2O3 catalysts for oxidative dehydrogenation of ethane to ethylene. J. Taiwan Inst. Chem. Eng. 61, 106–116 (2016). https://doi.org/10.1016/j.jtice.2016.01.003
E.T. Saw, U. Oemar, M.L. Ang, H. Kus, S. Kawi, High-temperature water gas shift reaction on Ni–Cu/CeO2 catalysts: effect of ceria nanocrystal size on carboxylate formation. Catal. Sci. Technol. 6(14), 5336–5349 (2016). https://doi.org/10.1039/c5cy01932j
A. Barrera et al., Influence of the type of sepiolite on the modification of the pore-size distribution in γ-Al2O3 supports. Appl. Clay Sci. 42(3–4), 415–421 (2009). https://doi.org/10.1016/j.clay.2008.04.009
T. Xing et al., Catalytic oxidative dehydrogenation of n-butane on gallium nitride-containing titanosilicate catalyst. Can. J. Chem. Eng. 97(12), 3115–3124 (2019). https://doi.org/10.1002/cjce.23585
J. Rischard, C. Antinori, L. Maier, O. Deutschmann, Oxidative dehydrogenation of n-butane to butadiene with Mo-V-MgO catalysts in a two-zone fluidized bed reactor. Appl. Catal. A 511, 23–30 (2016). https://doi.org/10.1016/j.apcata.2015.11.026
O. Rubio, J. Herguido, M. Menéndez, Oxidative dehydrogenation of n-butane on V/MgO catalysts-kinetic study in anaerobic conditions. Chem. Eng. Sci. 58(20), 4619–4627 (2003). https://doi.org/10.1016/j.ces.2003.07.004
O. Rubio, J. Herguido, M. Menéndez, G. Grasa, J.C. Abanades, Oxidative dehydrogenation of butane in an interconnected fluidized-bed reactor. AIChE J. 50(7), 1510–1522 (2004). https://doi.org/10.1002/aic.10134
M.L. Pacheco et al., MoO3/MgO as a catalyst in the oxidative dehydrogenation of n-butane in a two-zone fluidized bed reactor. Catal. Today 61, 101–107 (2000)
X. Liu, L. Duan, W. Yang, X. Zhu, Oxidative dehydrogenation of n-butane to butenes on Mo-doped VMgO catalysts. RSC Adv. 7(54), 34131–34137 (2017). https://doi.org/10.1039/c7ra04936f
B. Xu, X. Zhu, Z. Cao, L. Yang, W. Yang, Catalytic oxidative dehydrogenation of n-butane over V2O5/MO–Al2O3 (M = Mg, Ca, Sr, Ba) catalysts. Cuihua Xuebao 36(7), 1060–1067 (2015). https://doi.org/10.1016/S1872-2067(15)60839-7
S. Rostom, H. De Lasa, High propylene selectivity via propane oxidative dehydrogenation using a novel fluidizable catalyst: kinetic modelling. Ind. Eng. Chem. Res. (2018). https://doi.org/10.1021/acs.iecr.8b01891
M. Setnička, Z. Tišler, D. Kubička, R. Bulánek, Activity of molybdenum oxide catalyst supported on Al2O3, TiO2, and SiO2 matrix in the oxidative dehydrogenation of n-butane. Top. Catal. 58(14–17), 866–876 (2015). https://doi.org/10.1007/s11244-015-0453-2
C. Carrero et al., High performance (VOx)n-(TiOx)m/SBA-15 catalysts for the oxidative dehydrogenation of propane. Catal. Sci. Technol. 4(3), 786–794 (2014). https://doi.org/10.1039/c3cy00625e
S. Rostom, H.I. De Lasa, Propane oxidative dehydrogenation using consecutive feed injections and fluidizable VOx/γAl2O3 and VOx/ZrO2-γAl2O3 catalysts. Ind. Eng. Chem. Res. 56(45), 13109–13124 (2017). https://doi.org/10.1021/acs.iecr.7b01369
A.A. Ayandiran, I.A. Bakare, H. Binous, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, Oxidative dehydrogenation of propane to propylene over VOx/CaO–γ-Al2O3 using lattice oxygen. Catal. Sci. Technol. 6(13), 5154–5167 (2016). https://doi.org/10.1039/C6CY00078A
S. Rostom, H.I. de Lasa, Propane oxidative dehydrogenation using consecutive feed injections and fluidizable VOx/γAl2O3 and VOx/ZrO2-γAl2O3 catalysts. Ind. Eng. Chem. Res. (2017). https://doi.org/10.1021/acs.iecr.7b01369
J. Herguido, M. Mene, J. Santamarı, Oxidative dehydrogenation of n-butane in a two-zone fluidized-bed reactor. Ind. Eng. Chem. Res. 38, 90–97 (1999)
A.A.H. Elbadawi, M.S. Ba-Shammakh, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H.I. de Lasa, Phenomenologically based kinetics of ODH of ethane to ethylene using lattice oxygen of VOx/Al2O3–ZrO2 catalyst. Chem. Eng. Res. Des. 117, 733–745 (2017). https://doi.org/10.1016/j.cherd.2016.11.015
S. Al-Ghamdi, M. Volpe, M.M. Hossain, H. de Lasa, VOx/c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: desorption kinetics and catalytic activity. Appl. Catal. A 450, 120–130 (2013). https://doi.org/10.1016/J.APCATA.2012.10.007
J. Soler, J.M. López-Nieto, J. Herguido, M. Menéndez, J. Santamaría, Oxidative dehydrogenation of n-butane in a two-zone fluidized-bed reactor. Ind. Eng. Chem. Res. 38, 90–97 (1999)
J. Rischard, C. Antinori, L. Maier, O. Deutschmann, Oxidative dehydrogenation of n-butane to butadiene with Mo-V-MgO catalysts in a two-zone fluidized bed reactor. Appl. Catal. A 511(March), 23–30 (2016). https://doi.org/10.1016/j.apcata.2015.11.026
S.A. Al-ghamdi, H.I. De Lasa, Propylene production via propane oxidative dehydrogenation over VOx/c-Al2O3 catalyst. Fuel 128(April), 120–140 (2014). https://doi.org/10.1016/j.fuel.2014.02.033
Acknowledgements
This study was funded by University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT- 2020050), Heilongjiang Institute of Technology Doctoral Research Fund (2017BJ31), Provincial Leading Talent Echelon Cultivation Project of Heilongjiang Institute of Technology (No. 2020LJ03). This work was also supported by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2019/STG05/UNIM/02/2] and MyPAIR-PHC-Hibiscus Grant [MyPAIR/1/2020/STG05/UNIM//1]. The authors would also like to acknowledge UCSI University Research and Innovation Grant [REIG-FAS-2020/028].
Funding
This study was funded by University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT- 2020050), Heilongjiang Institute of Technology Doctoral Research Fund (2017BJ31), Provincial Leading Talent Echelon Cultivation Project of Heilongjiang Institute of Technology (No. 2020LJ03), UCSI University Research and Innovation Grant [REIG-FAS-2020/028].
Author information
Authors and Affiliations
Contributions
ZU: Writing—original draft, Writing—review & editing, IK & MK: Conceptualization, Formal analysis, Data curation, Funding acquisition, Investigation, KSK: Supervision, Validation, Writing—review & editing, AJ & US: Data curation, Formal analysis, Funding acquisition, Investigation, Visualization, TM & MM: Conceptualization, Visualization, PET: Supervision, Validation, Writing—review & editing, PLS: Funding acquisition, Supervision, Validation.
Corresponding authors
Ethics declarations
Competing Interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ullah, Z., Khan, M., Khan, I. et al. Recent Progress in Oxidative Dehydrogenation of Alkane (C2–C4) to Alkenes in a Fluidized Bed Reactor Under Mixed Metallic Oxide Catalyst. J Inorg Organomet Polym 34, 1–13 (2024). https://doi.org/10.1007/s10904-022-02433-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10904-022-02433-7