Skip to main content
Log in

Ce-MOF Nanosphere as Colorimetric Sensor with High Oxidase Mimicking Activity for Sensitive Detection of H2O2

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, a new oxidase mimic Ce-MOF was synthesized for the detection of H2O2. The Ce-MOF nanosphere as the oxidase mimic shows the highly catalytic chromogenic activity toward 3,3,5,5-tetramethylbenzidine. It was used instead of peroxidase mimics and H2O2 system for the colorimetric reaction, and this work provides a new highly sensitive and selective colorimetric method for the detection of H2O2, the limit of detection was 10 µM, and the range of the detection was 4 to 16 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Wei, C. Shu, R. Qiong-Qiong, W. Wei, Z. Yuan-Di, Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1), 49–58 (2012). https://doi.org/10.1039/C1AN15738H

    Article  Google Scholar 

  2. S.J. Yao, J.H. Xu, Y. Wang, X.X. Chen, Y.X. Xu, S.S. Hu, A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal. Chim. Acta 557(1–2), 78–84 (2006). https://doi.org/10.1016/j.aca.2005.10.052

    Article  CAS  Google Scholar 

  3. M. Darder, K. Takada, F. Pariente, E. Lorenzo, H.D. Abruna, Dithiobissuccinimidyl propionate as an anchor for assembling peroxidases at electrodes surfaces and its application in a H2O2 biosensor. Anal. Chem. 71(24), 5530–5537 (1999). https://doi.org/10.1021/ac990759x

    Article  CAS  PubMed  Google Scholar 

  4. E.A. Veal, A.M. Day, B.A. Morgan, Hydrogen peroxide sensing and signaling. Mol. Cell 26(1), 1–14 (2007). https://doi.org/10.1016/j.molcel.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  5. Z.J. Cai, Y.Q. Kuang, D. Pan, W. Liu, J.H. Jiang, Synthesis and characterization of a novel ELF-97-based fluorescent probe for hydrogen peroxide detection. Chin. J. Anal. Chem. 43(11), 1671–1675 (2015). https://doi.org/10.1016/S1872-2040(15)60875-1

    Article  CAS  Google Scholar 

  6. J.M. Lin, H. Arakawa, M. Yamada, Flow injection chemiluminescent determination of trace amounts of hydrogen peroxide in snow-water using KIO4–K2CO3 system. Anal. Chim. Acta 371(2), 171–176 (1998). https://doi.org/10.1016/S0003-2670(98)00304-3

    Article  CAS  Google Scholar 

  7. R.D.M. Travasso, F. Sampaio Dos Aidos, A. Bayani, P. Abranches, A. Salvador, Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol. 12, 233–245 (2017). https://doi.org/10.1016/j.redox.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L. Li, H.M. Lu, L. Deng, Electrochemical hydrogen peroxide sensor based on graphene and gold nanorods. Chin. J. Anal. Chem. 41(05), 719–724 (2013). https://doi.org/10.3724/SP.J.1096.2013.20937

    Article  CAS  Google Scholar 

  9. K. Zhao, W. Gu, S. Zheng, C. Zhang, Y. Xian, SDS–MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141, 47–52 (2015). https://doi.org/10.1016/j.talanta.2015.03.055

    Article  CAS  PubMed  Google Scholar 

  10. S. Rauf, M.A.H. Nawaz, M. Badea, J.L. Marty, A. Hayat, Nano-engineered biomimetic optical sensors for glucose monitoring in diabetes. Sensors 16(11), 1931 (2016). https://doi.org/10.3390/s16111931

    Article  CAS  PubMed Central  Google Scholar 

  11. W. Huang, T. Lin, Y. Cao, X. Lai, J. Peng, J. Tu, J.S. Kim, M.H. Lee, Hierarchical NiCo2O4 hollow sphere as a peroxidase mimetic for colorimetric detection of H2O2 and glucose. Sensors 17(1), 217 (2017). https://doi.org/10.3390/s17010217

    Article  CAS  PubMed Central  Google Scholar 

  12. Z. Weimin, M. Diao, D. Jianxiu, Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 120, 362–367 (2014). https://doi.org/10.1016/j.talanta.2013.12.028

    Article  CAS  Google Scholar 

  13. X. Jinrong, C. Zhongming, Determination of peroxides in environmental samples by high performance liquid chromatography with fluorescence detection]. Se pu = Chin. J. Chromatogr. 23(4), 366–374 (2005). https://doi.org/10.1007/s10895-011-0902-7

    Article  CAS  Google Scholar 

  14. Y.H. Jiang, N.N. Li, Z.J. Li, Synthesis of glutamic acid and histidine functionalized graphene quantum dots for hydrogen peroxide colorimetric determination and fluorescence imaging in tumor cells. Chin. J. Anal. Chem. 49(05), 809–816 (2021). https://doi.org/10.19756/j.issn.0253-3820.201560

    Article  CAS  Google Scholar 

  15. J.J. Luo, Y.J. Guo, Y.J. Tang, L. Zhang, J.H. Wang, P.H. Yang, Application of gold nanorod optical probe in detection of hydrogen peroxide and evaluation of antioxidant activity of polyphenols. Chin. J. Anal. Chem. 41(09), 1413–1417 (2013). https://doi.org/10.3724/SP.J.1096.2013.30148

    Article  CAS  Google Scholar 

  16. X. Si, C. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. Li, L. Sun, F. Xu, Z. Gabelica, C. Schick, High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ. Sci. 4(11), 4522–4527 (2011). https://doi.org/10.1039/c1ee01380g

    Article  CAS  Google Scholar 

  17. M. Yoon, K. Suh, S. Natarajan, K. Kim, Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52(10), 2688–2700 (2013). https://doi.org/10.1002/anie.201206410

    Article  CAS  Google Scholar 

  18. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. 118(36), 5974–5978 (2006). https://doi.org/10.1002/anie.200601878

    Article  CAS  Google Scholar 

  19. J. Cepeda, S. Pérez-Yáñez, G. Beobide, O. Castillo, J.Á. García, A. Luque, Photoluminescence tuning and water detection of yttrium diazinedicarboxylate materials through lanthanide doping. Eur. J. Inorg. Chem. 16, 2650–2663 (2015). https://doi.org/10.1002/ejic.201500090

    Article  CAS  Google Scholar 

  20. S. Ma, H.C. Zhou, Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46(1), 44–53 (2010). https://doi.org/10.1039/B916295J

    Article  CAS  Google Scholar 

  21. H. Chan-Yuan, S. Ming, G. Zhi-Yuan, W. He-Fang, Y. Xiu-Ping, Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 45(10), 4490–4496 (2011). https://doi.org/10.1021/es200256q

    Article  CAS  Google Scholar 

  22. L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 30(37), 1703663 (2018). https://doi.org/10.1002/adma.201703663

    Article  CAS  Google Scholar 

  23. J. Liu, L. Chen, H. Cui, J. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43(16), 6011–6061 (2014). https://doi.org/10.1039/C4CS00094C

    Article  CAS  PubMed  Google Scholar 

  24. G. Li, S. Zhao, Y. Zhang, Z. Tang, Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv. Mater. 30(51), 1800702–1800745 (2018). https://doi.org/10.1002/adma.201800702

    Article  CAS  Google Scholar 

  25. S. Li, X. Tan, M. Yue, L. Zhang, D. Chai, W. Wang, H. Pan, L. Fan, C. Zhao, A polyoxometalate-encapsulated nanocage cluster organic framework built from Cu4P2 units and its efficient bifunctional electrochemical performance. Chem. Commun. 56(96), 15177–15180 (2020). https://doi.org/10.1039/D0CC06665F

    Article  CAS  Google Scholar 

  26. Y. Li, J.J. Li, Q. Zhang, J.Y. Zhang, N. Zhang, Y.Z. Fang, J. Yan, Q. Ke, The multifunctional BODIPY@Eu-MOF nanosheets as bioimaging platform: a ratiometric fluorescencent sensor for highly efficient detection of F-, H2O2 and glucose. Sens. Actuators B Chem. 354, 131140 (2022). https://doi.org/10.1016/j.snb.2021.131140

    Article  CAS  Google Scholar 

  27. J. Pan, S. Li, L. Zhang, T. Yu, F. Li, W. Zhang, J. Wang, D. Zhang, Y. Yu, X. Li, Reduced graphene oxide/Ni foam supported ZIF-67 derived CuCo2S4@CoS2 core-shell heterostructure for boosted electrochemical energy storage. J. Energy Storage 47, 103550 (2022). https://doi.org/10.1016/j.est.2021.103550

    Article  Google Scholar 

  28. J. Pan, S. Li, F. Li, W. Zhang, D. Guo, L. Zhang, D. Zhang, H. Pan, Y. Zhang, Y. Ruan, Design and construction of core-shell heterostructure of Ni-V layered double hydroxide composite electrode materials for high-performance hybrid supercapacitor and L-Tryptophan sensor. J. Alloys Compds. 890, 161781 (2022). https://doi.org/10.1016/j.jallcom.2021.161781

    Article  CAS  Google Scholar 

  29. B. Lu, S. Li, J. Pan, L. Zhang, J. Xin, Y. Chen, X. Tan, pH-Controlled assembly of five new organophosphorus strandberg-type cluster-based coordination polymers for enhanced electrochemical capacitor performance. Inorg. Chem. 59(3), 1702–1714 (2020). https://doi.org/10.1021/acs.inorgchem.9b02858

    Article  CAS  PubMed  Google Scholar 

  30. S. Wang, W. Deng, L. Yang, Y. Tan, Q. Xie, S. Yao, Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces 9(29), 24440–24445 (2017). https://doi.org/10.1021/acsami.7b07307

    Article  CAS  PubMed  Google Scholar 

  31. D. Xu, K. Ge, Y. Chen, S. Qi, Y. Tian, S. Wang, J. Qiu, X. Wang, Q. Dong, Q. Liu, Cobalt-Iron mixed-metal-organic framework (Co3Fe-MMOF) as peroxidase mimic for highly sensitive enzyme-linked immunosorbent assay (ELISA) detection of Aeromonas hydrophila. Microchem. J. 154, 104591 (2020). https://doi.org/10.1016/j.microc.2019.104591

    Article  CAS  Google Scholar 

  32. D. Xu, S. Qi, Y. Chen, M. Yin, L. Zhang, K. Ge, X. Wei, X. Tian, P. Wang, M. Li, J. Wei, Z. Wang, J. Qiu, Hierarchical mesoporous hollow Ce-MOF nanosphere as oxidase mimic for highly sensitive colorimetric detection of ascorbic acid. Chem. Phys. Lett. 777, 138749 (2021). https://doi.org/10.1016/j.cplett.2021.138749

    Article  CAS  Google Scholar 

  33. Y. Ding, B. Yang, H. Liu, Z. Liu, X. Zhang, X. Zheng, Q. Liu, FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuators B Chem. 259, 775–783 (2018). https://doi.org/10.1016/j.snb.2017.12.115

    Article  CAS  Google Scholar 

  34. S. Chandra, V.K. Singh, P.K. Yadav, D. Bano, V. Kumar, V.K. Pandey, M. Talat, S.H. Hasan, Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal. Chim. Acta 1054, 145–156 (2018). https://doi.org/10.1016/j.aca.2018.12.024

    Article  CAS  PubMed  Google Scholar 

  35. X. Zhu, W. Chen, K. Wu, H. Li, M. Fu, Q. Liu, X. Zhang, A colorimetric sensor of H2O2 based on Co3O4-montmorillonite nanocomposites with peroxidase activity. New J. Chem. 42(2), 1501–1509 (2018). https://doi.org/10.1039/C7NJ03880A

    Article  CAS  Google Scholar 

  36. L. Zhang, M. Chen, Y. Jiang, M. Chen, Y. Ding, Q. Liu, A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sens. Actuators B Chem. 239, 28–35 (2017). https://doi.org/10.1016/j.snb.2016.07.168

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32000470).

Author information

Authors and Affiliations

Authors

Contributions

All authors XW, YL, SQ, YC, MY, LZ, XT, SG, FW, YZ, YL, JQ, DX have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Dongpo Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 338 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Li, Y., Qi, S. et al. Ce-MOF Nanosphere as Colorimetric Sensor with High Oxidase Mimicking Activity for Sensitive Detection of H2O2. J Inorg Organomet Polym 32, 3595–3600 (2022). https://doi.org/10.1007/s10904-022-02422-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02422-w

Keywords

Navigation