Skip to main content

Advertisement

Log in

A Review on Lead-Free-Bi0.5Na0.5TiO3 Based Ceramics and Films: Dielectric, Piezoelectric, Ferroelectric and Energy Storage Performance

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

To maintain the significant development of the ecological society, proper attention on Bi0.5Na0.5TiO3 (BNT) based perovskites has been directed toward the analysis of electrical energy storage in past decades. This article aims to provide a comprehensive analysis of lead-free BNT based materials for piezoelectric detectors, sensors, shape memory alloys and ferroelectric random access memories. It discusses the basic concept of piezo and ferroelectricity and discusses the salient properties of energy storage materials. The BNT based materials with ergodic and non-ergodic relaxor states have been analyzed. The potential environmental threat of lead-containing materials in electronic materials has gradually shifted the focus to non-toxic, eco-friendly piezoelectric materials. Hence, this article's primary focus is the analysis of BNT based bulk polycrystalline compounds and thin and thick films. Detailed research on dielectric, piezoelectric, ferroelectric, energy storage, and efficiency performance has been performed. Furthermore, the effect of doping on the BNT compound has been discussed in detail. With energy storage materials being used in different applications, a part of this review elucidates the use of energy-related BNT based compounds to cater to the needs of technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Shirane, A. Takeda, Phase transitions in solid solutions of PbZrO3 and PbTiO3 (I) small concentrations of PbTiO3. J. Phys. Soc. Jpn. 7, 5–11 (1952). https://doi.org/10.1143/JPSJ.7.5

    Article  CAS  Google Scholar 

  2. T.R. Shrout, Z.P. Chang, N. Kim, S. Markgraf, Dielectric behavior of single crystals near the (1−X) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectr. Lett. Sect. 12, 63–69 (1990). https://doi.org/10.1080/07315179008201118

    Article  CAS  Google Scholar 

  3. P.K. Panda, Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009). https://doi.org/10.1007/s10853-009-3643-0

    Article  CAS  Google Scholar 

  4. Y. Zuo, Z. Fang, D. Fan, K. Liu, H. Niu, H. Wang, Y. Du, M. Shen, X. Shang, Z. Li, Y. Chen, Interrelation between lattice structures and polarization in high Curie temperature piezoelectric Na0.5Bi4.46Ce0.04Ti4xCoxOy ceramics. Ceram. Int. 48, 9297–9303 (2022). https://doi.org/10.1016/j.ceramint.2021.12.117

    Article  CAS  Google Scholar 

  5. S. Sharma, R. Kiran, P. Azad, R. Vaish, A review of piezoelectric energy harvesting tiles: available designs and future perspective. Energy Convers. Manag. 254, 115272 (2022). https://doi.org/10.1016/j.enconman.2022.115272

    Article  CAS  Google Scholar 

  6. J. Shim, D.I. Son, J.S. Lee, J. Lee, G.-H. Lim, H. Cho, E. Kim, S.D. Bu, C.K. Jeong, S. Rezvani, S.S. Park, Y.J. Park, BNNT-ZnO QDs nanocomposites for improving piezoelectric nanogenerator and piezoelectric properties of boron nitride nanotube. Nano Energy 93, 106886 (2022). https://doi.org/10.1016/j.nanoen.2021.106886

    Article  CAS  Google Scholar 

  7. T. Zheng, Y. Yu, Y. Pang, D. Zhang, Y. Wang, H. Zhao, X. Zhang, H. Leng, X. Yang, Q. Cai, Improving bone regeneration with composites consisting of piezoelectric poly(l-lactide) and piezoelectric calcium/manganese co-doped barium titanate nanofibers. Compos. Part B 234, 109734 (2022). https://doi.org/10.1016/j.compositesb.2022.109734

    Article  CAS  Google Scholar 

  8. J. Luo, D. Chen, H. Qian, Y. Liu, Y. Lyu, Orientation dependent intrinsic and extrinsic contributions to the piezoelectric response in lead-free (Na0.5K0.5)NbO3 based films. J. Alloys Compd. 906, 164346 (2022). https://doi.org/10.1016/j.jallcom.2022.164346

    Article  CAS  Google Scholar 

  9. J. Yan, H. Zhu, J. Ouyang, I. Kanno, P. Yan, Y. Wang, K. Onishi, T. Nishikado, Highly (00l)-textured BiFeO3 thick films integrated on stainless steel foils with an optimized piezoelectric performance. J. Eur. Ceram. Soc. (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.03.011

    Article  Google Scholar 

  10. S. Supriya, F. Fernández-Martinez, Thermal, dielectric, and surface analysis of NaDP doped glycine phosphite single crystals. J. Struct. Chem. (2017). https://doi.org/10.1134/S0022476617080261

    Article  Google Scholar 

  11. S. Supriya, A.J. Dos santos-García, F. Fernández-Martinez, Growth of NaDP-GPI single crystal and its analysis on basis of HRXRD, optical and mechanical studies. Mater. Lett. 128, 114–116 (2014). https://doi.org/10.1016/j.matlet.2014.04.139

    Article  CAS  Google Scholar 

  12. S. Supriya, S. Kalainathan, G. Bhagavannarayana, Effect of KOH on glycine phosphite single crystal grown by the SR method. J. Phys. Chem. Solids. (2013). https://doi.org/10.1016/j.jpcs.2012.08.001

    Article  Google Scholar 

  13. S. Supriya, S. Kalainathan, Mechanical properties of β-alanine doped glycine phosphite single crystal grown by SR method. Int. J. Chem. Res. 3, 1373–1379 (2011)

    CAS  Google Scholar 

  14. L. Zhang, S. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G. Zhang, Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceram. Int. 40, 5455–5460 (2014). https://doi.org/10.1016/j.ceramint.2013.10.131

    Article  CAS  Google Scholar 

  15. G. Zhang, Z. Chen, B. Fan, J. Liu, M. Chen, M. Shen, P. Liu, Y. Zeng, S. Jiang, Q. Wang, Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing. APL Mater. 4, 64103 (2016). https://doi.org/10.1063/1.4950844

    Article  CAS  Google Scholar 

  16. G.R. Monama, K.E. Ramohlola, E.I. Iwuoha, K.D. Modibane, Progress on perovskite materials for energy application. Results Chem. (2022). https://doi.org/10.1016/j.rechem.2022.100321

    Article  Google Scholar 

  17. A. Alhodaib, Study of vacancy ordered double perovskites In2PtX6 (X = Cl, Br, I) for solar cells and renewable energy, alternative of hybrid perovskites. J. Solid State Chem. 309, 123015 (2022). https://doi.org/10.1016/j.jssc.2022.123015

    Article  CAS  Google Scholar 

  18. S. Supriya, Influence of sodium trimetaphosphate on glycine phosphite single crystals grown by modified thermal gradient method. J. Cryst. Growth. 577, 126404 (2022). https://doi.org/10.1016/j.jcrysgro.2021.126404

    Article  CAS  Google Scholar 

  19. S. Supriya, N. Antonatos, J. Luxa, R. Gusmão, Z. Sofer, Comparison between layered Pt3Te4 and PtTe2 for electrocatalytic reduction reactions. FlatChem. 29, 100280 (2021). https://doi.org/10.1016/j.flatc.2021.100280

    Article  CAS  Google Scholar 

  20. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, H. Yan, High energy density in silver niobate ceramics. J. Mater. Chem. A 4, 17279–17287 (2016). https://doi.org/10.1039/C6TA06353E

    Article  CAS  Google Scholar 

  21. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.-F. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017). https://doi.org/10.1002/adma.201701824

    Article  CAS  Google Scholar 

  22. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan, Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 5, 17525–17531 (2017). https://doi.org/10.1039/C7TA03821F

    Article  CAS  Google Scholar 

  23. B.-J. Chu, D.-R. Chen, G.-R. Li, Q.-R. Yin, Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics. J. Eur. Ceram. Soc. 22, 2115–2121 (2002). https://doi.org/10.1016/S0955-2219(02)00027-4

    Article  CAS  Google Scholar 

  24. S. Supriya, S. Kalainathan, S. Swaroop, Particle size analysis of gadolinium doped sodium bismuth titanate ceramics. Arch. Appl. Sci. Res. 2, 325–330 (2010)

    CAS  Google Scholar 

  25. S. Supriya, S. Kalainathan, S. Swaroop, Synthesis and characterization of CeO2 doped bismuth sodium potassium titanate ceramics. Int. J. Chem. Res. 3, 488–494 (2011)

    CAS  Google Scholar 

  26. S. Supriya, S. Kalainathan, S. Swaroop, Synthesis and characterization of Na0.5Bi4.5Ti4O15 powders by stearic acid gel method. Arch. Appl. Sci. Res. 2, 386–391 (2010)

    CAS  Google Scholar 

  27. N. Li, Y. Yang, Z. Shi, Z. Lan, A. Arramel, P. Zhang, W.-J. Ong, J. Jiang, J. Lu, Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. IScience 25, 103753 (2022). https://doi.org/10.1016/j.isci.2022.103753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.B. Hanif, S. Rauf, M. Motola, Z.U.D. Babar, C.-J. Li, C.-X. Li, Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Mater. Res. Bull. 146, 111612 (2022). https://doi.org/10.1016/j.materresbull.2021.111612

    Article  CAS  Google Scholar 

  29. J. Singh, A. Kumar, A. Kumar, Facile wet chemical synthesis and electrochemical performance of double perovskite-La2NiMnO6 for energy storage application. Mater. Today Proc. 48, 587–589 (2022). https://doi.org/10.1016/j.matpr.2021.05.231

    Article  CAS  Google Scholar 

  30. P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.-H. Kim, A. Deep, Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy 80, 105552 (2021). https://doi.org/10.1016/j.nanoen.2020.105552

    Article  CAS  Google Scholar 

  31. T. Li, X. Lou, X. Ke, S. Cheng, S. Mi, X. Wang, J. Shi, X. Liu, G. Dong, H. Fan, Y. Wang, X. Tan, Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater. 128, 337–344 (2017). https://doi.org/10.1016/j.actamat.2017.02.037

    Article  CAS  Google Scholar 

  32. S. Subramani, Advanced bismuth oxide materials, 2019

  33. L. Tan, Y. Wang, Q. Sun, F. Zeng, Effects of (K0.5Na0.5)(Nb0.96Sb0.04)O3 on microstructure and electrical properties of BNT-based piezoelectric ceramics. Mater. Sci. Eng. B 260, 114653 (2020). https://doi.org/10.1016/j.mseb.2020.114653

    Article  CAS  Google Scholar 

  34. X.-Y. Kang, Z.-H. Zhao, Y.-K. Lv, Y. Dai, BNT-based multi-layer ceramic actuator with enhanced temperature stability. J. Alloys Compd. 771, 541–546 (2019). https://doi.org/10.1016/j.jallcom.2018.08.311

    Article  CAS  Google Scholar 

  35. J. Yin, Y. Wang, Y. Zhang, B. Wu, J. Wu, Thermal depolarization regulation by oxides selection in lead-free BNT/oxides piezoelectric composites. Acta Mater. 158, 269–277 (2018). https://doi.org/10.1016/j.actamat.2018.07.072

    Article  CAS  Google Scholar 

  36. R. Dittmer, W. Jo, D. Damjanovic, J. Rödel, Lead-free high-temperature dielectrics with wide operational range. J. Appl. Phys. 109, 34107 (2011). https://doi.org/10.1063/1.3544481

    Article  CAS  Google Scholar 

  37. X. Liu, B. Liu, F. Li, P. Li, J. Zhai, B. Shen, Relaxor phase evolution and temperature-insensitive large strain in B-site complex ions modified NBT-based lead-free ceramics. J. Mater. Sci. 53, 309 (2018)

    Article  CAS  Google Scholar 

  38. H. Zhang, J. Zhou, J. Shen, X. Yang, T. Wang, G. Xiang, Q. Wei, W. Chen, Electric field-temperature phase diagram of Bi1/2(Na0.8K0.2)1/2TiO3 relaxor ferroelectrics with Fe doping. J. Appl. Phys. 126, 64102 (2019). https://doi.org/10.1063/1.5097127

    Article  CAS  Google Scholar 

  39. S. Supriya, Synthesis mechanisms and effects of BaTiO3 doping on the optical properties of Bi0.5Na0.5TiO3 lead-free ceramics. J. Solid State Chem. 308, 122940 (2022). https://doi.org/10.1016/j.jssc.2022.122940

    Article  CAS  Google Scholar 

  40. A. Deng, J. Wu, Enhanced strain and electrostrictive properties in lead-free BNT-based ceramics via rare earth doping. J. Mater. 8, 401–407 (2022). https://doi.org/10.1016/j.jmat.2021.08.002

    Article  Google Scholar 

  41. G. Supriya, S. Kalainathan, S. Bhagavannarayana, Effect of NaOH on glycine phosphite single crystals grown by SR method. Phys. Express. 1, 50–56 (2011)

    CAS  Google Scholar 

  42. S. Supriya, S. Kalainathan, Unidirectional growth of β-Alanine doped GPI single crystal and its surface analysis using etching, SEM, AFM and laser damage threshold studies. Int. J. Chem. Res. 3, 1332–1338 (2011)

    CAS  Google Scholar 

  43. S. Supriya, S. Kalainathan, G. Bhagavannarayana, Effect of β-alanine on glycine phosphite single crystal grown by SR method. Int. J. Chem. Res. 3, 1326–1331 (2011)

    CAS  Google Scholar 

  44. S. Supriya, S. Kalainathan, A comparative study—pure and urea doped glycine phosphite single crystals. Int. J. Chem. Res. 3, 126–130 (2011)

    CAS  Google Scholar 

  45. S. Supriya, S. Kalainathan, Surface analysis of SR method grown potassium hydroxide doped glycine phosphite single crystals. Asian J. Biochem. Pharm. Res. 1, 631–639 (2011)

    CAS  Google Scholar 

  46. S. Supriya, S. Kalainathan, Investigations on etching, SEM, AFM and laser damage threshold of sodium hydroxide doped GPI single crystal grown by SR method. Asian J. Biochem. Pharm. Res. 1, 640–649 (2011)

    CAS  Google Scholar 

  47. S. Supriya, S. Kalainathan, Growth of pure and urea doped glycine phosphite and its analysis on the basis of mechanical properties. Asian J. Biochem. Pharm. Res. 1, 650–658 (2011)

    CAS  Google Scholar 

  48. S. Supriya, S. Kalainathan, Improvement of optical qualities of urea doped GPI single crystal grown by sankaranarayanan and ramasamy method. Asian J. Biochem. Pharm. Res. 2, 621–630 (2011)

    Google Scholar 

  49. S. Supriya, S. Kalainathan, Mechanical and thermal studies of pure and KOH doped glycine phosphite single crystals: Sankaranarayanan–Ramasamy (SR) method. Arch. Appl. Sci. Res. 2, 298–310 (2010)

    CAS  Google Scholar 

  50. S. Supriya, Basics of Single Crystal Growth Techniques for Crystal Growth Scientists (Springer, Heidelberg, 2017)

    Google Scholar 

  51. W. Cao, The strain limits on switching. Nat. Mater. 4, 727–728 (2005). https://doi.org/10.1038/nmat1506

    Article  CAS  PubMed  Google Scholar 

  52. S. Supriya, The Text Book on Advanced Ceramics (Springer, New York, 2017)

    Google Scholar 

  53. M. Afifi, A.O. Turky, M. Rasly, M.M. Rashad, J.A. Turner, Field-induced polarization response and energy storage behavior of lead-free BNT-BKT-SZ films. Ceram. Int. 46, 26061–26068 (2020). https://doi.org/10.1016/j.ceramint.2020.07.099

    Article  CAS  Google Scholar 

  54. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y. Wang, L. Guo, W. Tai, H. Wei, Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 37, 3303–3311 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.071

    Article  CAS  Google Scholar 

  55. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Sci. Rep. 7, 8726 (2017). https://doi.org/10.1038/s41598-017-06966-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. C. Zhou, X. Zhang, S. Li, J. Yan, X. Qi, Dielectric and energy storage properties of (La, Li)x[(Bi, Na)BaSrCa]1−xTiO3 high-entropy perovskite ceramics. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.01.326

    Article  Google Scholar 

  57. D. Meng, Q. Feng, M. Wang, N. Luo, X. Chen, X. Liu, C. Yuan, Y. Wei, T. Fujita, H. You, Realising high comprehensive energy storage performance of BaTiO3-based perovskite ceramics via La(Zn1/2Hf1/2)O3 modification. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.02.164

    Article  Google Scholar 

  58. H. Tang, Y.-C. Hu, X.-Y. Chen, X.-D. Jian, X.-B. Zhao, Y.-B. Yao, T. Tao, B. Liang, X.-G. Tang, S.-G. Lu, Enhancement of energy-storage properties in BiFeO3-based lead-free bulk ferroelectrics. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.02.229

    Article  PubMed  PubMed Central  Google Scholar 

  59. J. Yin, X. Lv, J. Wu, Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1xyTaxNby)O3 lead-free ceramics. Ceram. Int. 43, 13541–13546 (2017). https://doi.org/10.1016/j.ceramint.2017.07.060

    Article  CAS  Google Scholar 

  60. P. Li, W. Li, H. Zeng, S. Liu, W. Wang, J. Zhai, Ferroelectric and piezoelectric properties of La-modified lead-free (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–SrTiO3 thin films. Ceram. Int. 41, 4479–4486 (2015). https://doi.org/10.1016/j.ceramint.2014.11.140

    Article  CAS  Google Scholar 

  61. J.U. Rahman, A. Hussain, A. Maqbool, G.H. Ryu, T.K. Song, W.-J. Kim, M.H. Kim, Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics. J. Alloys Compd. 593, 97–102 (2014). https://doi.org/10.1016/j.jallcom.2014.01.031

    Article  CAS  Google Scholar 

  62. S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007). https://doi.org/10.1063/1.2783200

    Article  CAS  Google Scholar 

  63. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free electromechanical ceramics with fatigue-resistant behavior. J. Alloys Compd. 647, 857–865 (2015). https://doi.org/10.1016/j.jallcom.2015.06.151

    Article  CAS  Google Scholar 

  64. S. Supriya, A.J. Dos Santos-Garcia, C. You, F. Fernandez-Martinez, Analysis of single and binary phases in cerium doped sodium bismuth titanate-Na0.5Bi0.5TiO3 materials. Energy Procedia (2015). https://doi.org/10.1016/j.egypro.2015.12.313

    Article  Google Scholar 

  65. S. Supriya, Effect of sintering temperature and micro structural analysis on sol–gel derived silver bismuth titanate ceramics. Mater. Res. Bull. 96, 290–295 (2017). https://doi.org/10.1016/j.materresbull.2017.01.018

    Article  CAS  Google Scholar 

  66. S. Chaterjee, G. Agrawal, A. Mishra, S. Anwar, Electromechanical properties and electric field induced strain of BNT-BT piezoceramic material at the MPB region. Mater. Today Proc. 5, 24880–24886 (2018). https://doi.org/10.1016/j.matpr.2018.10.287

    Article  CAS  Google Scholar 

  67. J. Koruza, V. Rojas, L. Molina-Luna, U. Kunz, M. Duerrschnabel, H.-J. Kleebe, M. Acosta, Formation of the core–shell microstructure in lead-free Bi1/2Na1/2TiO3–SrTiO3 piezoceramics and its influence on the electromechanical properties. J. Eur. Ceram. Soc. 36, 1009–1016 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.046

    Article  CAS  Google Scholar 

  68. M. Cernea, B.S. Vasile, I.V. Ciuchi, V.A. Surdu, C. Bartha, A. Iuga, P. Galizia, C. Galassi, Composite BNT-BT0.08/CoFe2O4 with core-shell nanostructure for piezoelectric and ferromagnetic applications. Mater. Sci. Eng. B 240, 7–15 (2019). https://doi.org/10.1016/j.mseb.2019.01.001

    Article  CAS  Google Scholar 

  69. S. Subramani, F. Fernández, A.J. Dos santos, M. del Rio, O. López, Efectos de la humedad en la calcita natural, aragonita y portlandita de las piedras de cal de construcción = Effects of moisture on natural calcite, aragonite and portlandite building limestones. An. Edif. (2019). https://doi.org/10.20868/ade.2019.3915

    Article  Google Scholar 

  70. S. Supriya, A.J. dos Santos-García, J. de Frutos, F. Fernández-Martinez, Estudio de fases simples y binarias en BNT puro y dopado con cerio Na0.5Bi(0.5–x)CexTiO3, Boletín La Soc. Española Cerámica y Vidr. 54, 225–230 (2015). https://doi.org/10.1016/j.bsecv.2015.11.002

    Article  CAS  Google Scholar 

  71. X.X. Wang, X.G. Tang, H.L.W. Chan, Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 85, 91–93 (2004). https://doi.org/10.1063/1.1767592

    Article  CAS  Google Scholar 

  72. S. Supriya, A.J. Dos Santos-Garcia, F. Fernandez-Martinez, Effect of cerium additive and secondary phase analysis on Ag0.5Bi0.5TiO3 ceramics. Bull. Mater. Sci. 39, 85–89 (2016)

    Article  CAS  Google Scholar 

  73. D. Duraisamy, G.N. Venkatesan, Observation of enhanced electrostrictive strain in (1–2x)Na0.5Bi0.5TiO3−xBaTiO3xBiAlO3 lead-free ceramics. Sens. Actuators A 315, 112307 (2020). https://doi.org/10.1016/j.sna.2020.112307

    Article  CAS  Google Scholar 

  74. K. Shalini, S. Pappachan, A. Mayeen, N. Kalarikkal, N.V. Giridharan, Strengthened magnetoelectric multiferroic response in (K0.5Na0.5[Nb1xFex/2Mnx/2]O3) ceramics. Mater. Lett. 261, 126988 (2020). https://doi.org/10.1016/j.matlet.2019.126988

    Article  CAS  Google Scholar 

  75. X.-C. Zheng, G.-P. Zheng, Z. Lin, Z.-Y. Jiang, Thermo-electrical energy conversions in Bi0.5Na0.5TiO3–BaTiO3 thin films prepared by sol–gel method. Thin Solid Films 522, 125–128 (2012). https://doi.org/10.1016/j.tsf.2012.08.052

    Article  CAS  Google Scholar 

  76. T. Yu, K.W. Kwok, H.L.W. Chan, Preparation and properties of sol–gel-derived Bi0.5Na0.5TiO3 lead-free ferroelectric thin film. Thin Solid Films 515, 3563–3566 (2007). https://doi.org/10.1016/j.tsf.2006.10.136

    Article  CAS  Google Scholar 

  77. N.V. Giridharan, S. Supriya, Effect of processing on the properties of Bi3.15Nd0.85Ti3O12 thin films. Thin Solid Films 516, 5244–5247 (2008). https://doi.org/10.1016/j.tsf.2007.07.018

    Article  CAS  Google Scholar 

  78. F. Ni, K. Zhu, L. Xu, Y. Liu, H. Yan, B. Shen, J. Zhai, Piezoelectric enhancement and vacancy defect reduction of lead-free Bi0.5Na0.5TiO3-based thin films. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.01.128

    Article  Google Scholar 

  79. W. Li, P. Li, H. Zeng, Z. Yue, J. Zhai, The effect of stress on the piezoelectric properties of BNT–BT–ST thin films. Mater. Lett. 162, 135–137 (2016). https://doi.org/10.1016/j.matlet.2015.09.137

    Article  CAS  Google Scholar 

  80. L. Li, J. Hao, Z. Xu, W. Li, R. Chu, 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb. Mater. Lett. 184, 152–156 (2016). https://doi.org/10.1016/j.matlet.2016.07.150

    Article  CAS  Google Scholar 

  81. B.T. Nguyen, S.S. Won, B. ChanPark, Y.J. Jo, C.W. Ahn, I.W. Kim, T.H. Kim, Transverse piezoelectric properties of Mn-doped Bi0.5Na0.5TiO3 thin films. Curr. Appl. Phys. 20, 1447–1452 (2020). https://doi.org/10.1016/j.cap.2020.07.004

    Article  Google Scholar 

  82. X.A. Mei, M. Chen, W.K. An, C.Q. Huang, J. Liu, A.H. Cai, Cation distribution and structural instability in Pr-Doped Bi4Ti3O12. Key Eng. Mater. 368–372, 85–87 (2008). https://doi.org/10.4028/www.scientific.net/KEM.368-372.85

    Article  Google Scholar 

  83. N.V. Giridharan, S. Madeswaran, R. Jayavel, Structural, morphology and electrical studies on ferroelectric bismuth titanate thin films prepared by sol–gel technique. J. Cryst. Growth. 237–239, 468–472 (2002). https://doi.org/10.1016/S0022-0248(01)01983-2

    Article  Google Scholar 

  84. E.S. Hellman, E.H. Hartford, R.M. Fleming, Molecular beam epitaxy of superconducting (Rb, Ba)BiO3. Appl. Phys. Lett. 55, 2120–2122 (1989). https://doi.org/10.1063/1.102343

    Article  CAS  Google Scholar 

  85. S. Madeswaran, N.V. Giridharan, R. Jayavel, Sol–gel synthesis and property studies of layered perovskite bismuth titanate thin films. Mater. Chem. Phys. 80, 23–28 (2003). https://doi.org/10.1016/S0254-0584(02)00489-3

    Article  CAS  Google Scholar 

  86. M. Cernea, L. Trupina, C. Dragoi, B.S. Vasile, R. Trusca, Structural and piezoelectric characteristics of BNT–BT0.05 thin films processed by sol–gel technique. J. Alloys Compd. 515, 166–170 (2012). https://doi.org/10.1016/j.jallcom.2011.11.129

    Article  CAS  Google Scholar 

  87. L. Xu, F. Ni, K. Zhu, B. Song, Y. Liu, H. Yan, B. Shen, J. Zhai, Macrodomain structure formed in (Sr0.7Bi0.2–0.1)TiO3-modified Bi0.5Na0.4K0.1TiO3 thin film. Ceram. Int. 47, 26955–26962 (2021). https://doi.org/10.1016/j.ceramint.2021.06.109

    Article  CAS  Google Scholar 

  88. S.A. Stanley, M.D. Cropper, Structure and resistivity of bismuth thin films deposited by pulsed DC sputtering. Appl. Phys. A 120, 1461–1468 (2015). https://doi.org/10.1007/s00339-015-9337-3

    Article  CAS  Google Scholar 

  89. P. Xiao, T. Dong, L. Lan, Z. Lin, W. Song, D. Luo, M. Xu, J. Peng, High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature. Sci. Rep. 6, 25000 (2016). https://doi.org/10.1038/srep25000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. P. Fan, Y. Zhang, J. Huang, W. Hu, D. Huang, Z. Liu, B. Xie, X. Li, J. Xiao, H. Zhang, Constrained sintering and electrical properties of BNT–BKT lead-free piezoceramic thick films. Ceram. Int. 42, 2534–2541 (2016). https://doi.org/10.1016/j.ceramint.2015.10.055

    Article  CAS  Google Scholar 

  91. V. Walter, P. Delobelle, P. Le Moal, E. Joseph, M. Collet, A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate. Sens. Actuators A 96, 157–166 (2002)

    Article  CAS  Google Scholar 

  92. S. Taleb, M.A. Badillo-Ávila, M. Acuautla, Fabrication of poly (vinylidene fluoride) films by ultrasonic spray coating; uniformity and piezoelectric properties. Mater. Des. 212, 110273 (2021). https://doi.org/10.1016/j.matdes.2021.110273

    Article  CAS  Google Scholar 

  93. X.-Y. He, A.-L. Ding, X.-S. Zheng, P.-S. Qiu, W.-G. Luo, Preparation of PZT(53/47) thick films deposited by a dip-coating process. Microelectron. Eng. 66, 865–871 (2003). https://doi.org/10.1016/S0167-9317(02)01013-4

    Article  CAS  Google Scholar 

  94. J. Zhao, F. Wang, W. Li, H. Li, D. Zhou, S. Gong, Y. Hu, Q. Fu, Grain-oriented sodium bismuth titanate-based lead-free piezoelectric ceramics prepared using the pulsed strong magnetic field and template grain growth. J. Appl. Phys. 108, 73535 (2010). https://doi.org/10.1063/1.3486474

    Article  CAS  Google Scholar 

  95. S. Chu, W. Chen, Z. Fang, X. Xiao, Y. Liu, J. Chen, J. Huang, Z. Xiao, Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12, 147 (2021). https://doi.org/10.1038/s41467-020-20433-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. H. Zhu, C. Liu, J. Liu, H. Cheng, J. Ouyang, Crystalline texture analyses of sputtered BiFeO3 thick films on Si with a large polarization. Ceram. Int. 48, 3254–3260 (2022). https://doi.org/10.1016/j.ceramint.2021.10.099

    Article  CAS  Google Scholar 

  97. W. Bai, H. Li, J. Xi, J. Zhang, B. Shen, J. Zhai, Effect of different templates and texture on structure evolution and strain behavior of <001>-textured lead-free piezoelectric BNT-based ceramics. J. Alloys Compd. 656, 13–23 (2016). https://doi.org/10.1016/j.jallcom.2015.09.209

    Article  CAS  Google Scholar 

  98. J. Akedo, Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J. Am. Ceram. Soc. 89, 1834–1839 (2006). https://doi.org/10.1111/j.1551-2916.2006.01030.x

    Article  CAS  Google Scholar 

  99. F. Makin, F. Alam, M.A. Buckingham, D.J. Lewis, Synthesis of ternary copper antimony sulfide via solventless thermolysis or aerosol assisted chemical vapour deposition using metal dithiocarbamates. Sci. Rep. 12, 5627 (2022). https://doi.org/10.1038/s41598-022-08822-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. J. Lee, S. Moon, S.S. Patil, K. Lee, Visible photoresponse of TiO2 nanotubes in comparison to that of nanoparticles and anodic thin film. Catal. Today (2022). https://doi.org/10.1016/j.cattod.2022.01.008

    Article  Google Scholar 

  101. Z. Xu, X. Hao, S. An, Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3–SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Alloys Compd. 639, 387–392 (2015). https://doi.org/10.1016/j.jallcom.2015.03.133

    Article  CAS  Google Scholar 

  102. Y. Zhao, X. Hao, M. Li, Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloys Compd. 601, 112–115 (2014). https://doi.org/10.1016/j.jallcom.2014.02.137

    Article  CAS  Google Scholar 

  103. S. Supriya, Highly tunable multifunctional rare earth based Bi0.5-xCexNa0.5TiO3 perovskites via site selective doping engineering. Mater. Chem. Phys. 287, 126233 (2022). https://doi.org/10.1016/j.matchemphys.2022.126233

    Article  CAS  Google Scholar 

  104. M. Cernea, R. Radu, F. Craciun, R. Gavrila, V.A. Surdu, R. Trusca, V. Mihalache, Dielectric, piezoelectric and magnetic behavior of CoFe2O4/BNT–BT0.08 monolayer thin films composites. Mater. Sci. Eng. B 282, 115770 (2022). https://doi.org/10.1016/j.mseb.2022.115770

    Article  CAS  Google Scholar 

  105. S. Singh, A. Kaur, P. Kaur, L. Singh, An investigation on cubic and monoclinic phase coexistence in sol-gel derived LaFeO3–Na0.5Bi0.5TiO3 ceramics. J. Alloys Compd. 857, 158284 (2021). https://doi.org/10.1016/j.jallcom.2020.158284

    Article  CAS  Google Scholar 

  106. X. Ma, L. Xue, L. Wan, S. Yin, Q. Zhou, Y. Yan, Synthesis, sintering, and characterization of BNT perovskite powders prepared by the solution combustion method. Ceram. Int. 39, 8147–8152 (2013). https://doi.org/10.1016/j.ceramint.2013.03.088

    Article  CAS  Google Scholar 

  107. Y.-D. Hou, L. Hou, T.-T. Zhang, M.-K. Zhu, H. Wang, H. Yan, (Na0.8K0.2)0.5Bi0.5TiO3 nanowires: low-temperature sol–gel–hydrothermal synthesis and densification. J. Am. Ceram. Soc. 90, 1738–1743 (2007). https://doi.org/10.1111/j.1551-2916.2007.01657.x

    Article  CAS  Google Scholar 

  108. W. Bai, L. Wang, X. Zhao, P. Zheng, F. Wen, L. Li, J. Zhai, Z. Ji, Tailoring frequency-insensitive large field-induced strain and energy storage properties in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-modified (Bi0.5Na0.5)TiO3 lead-free ceramics. Dalton Trans. 48, 10160–10173 (2019). https://doi.org/10.1039/C9DT01738K

    Article  CAS  PubMed  Google Scholar 

  109. S. Wu, P. Chen, J. Zhai, B. Shen, P. Li, F. Li, Enhanced piezoelectricity and energy storage performances of Fe-doped BNT–BKT–ST thin films. Ceram. Int. 44, 21289–21294 (2018). https://doi.org/10.1016/j.ceramint.2018.08.179

    Article  CAS  Google Scholar 

  110. Y. Ding, P. Li, J. He, W. Que, W. Bai, P. Zheng, J. Zhang, J. Zhai, Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos. Part B 230, 109493 (2022). https://doi.org/10.1016/j.compositesb.2021.109493

    Article  CAS  Google Scholar 

  111. C. Wang, X. Lou, T. Xia, S. Tian, The dielectric, strain and energy storage density of BNT-BKHxT1−x piezoelectric ceramics. Ceram. Int. 43, 9253–9258 (2017). https://doi.org/10.1016/j.ceramint.2017.04.081

    Article  CAS  Google Scholar 

  112. B. Jiang, T. Grande, S.M. Selbach, Local structure of disordered Bi0.5K0.5TiO3 investigated by pair distribution function analysis and first-principles calculations. Chem. Mater. 29, 4244–4252 (2017). https://doi.org/10.1021/acs.chemmater.7b00276

    Article  CAS  Google Scholar 

  113. Y. Xie, H. Hao, J. Xie, Z. He, S. Zhang, Z. Li, M. Cao, Z. Yao, H. Liu, The energy-storage performance and dielectric properties of (0.94–x)BNT-0.06BT-xST thin films prepared by sol–gel method. J. Alloys Compd. 860, 158164 (2021). https://doi.org/10.1016/j.jallcom.2020.158164

    Article  CAS  Google Scholar 

  114. H. Zhao, P. Ren, Q. Hua, L. Liu, X. Wang, Y. Wan, F. Yan, G. Zhao, D. Wang, Temperature stable (1–x)(0.9Na0.5Bi0.5TiO301BiAlO3)-xNaTaO3 ceramics and capacitors with ultra-wide operational range. J. Alloys Compd. 886, 161315 (2021). https://doi.org/10.1016/j.jallcom.2021.161315

    Article  CAS  Google Scholar 

  115. T. Schulz, V. Veerapandiyan, M. Deluca, J. Töpfer, Synthesis and properties of lead-free BNT-BT-xCZ ceramics as high-temperature dielectrics. Mater. Res. Bull. 145, 111560 (2022). https://doi.org/10.1016/j.materresbull.2021.111560

    Article  CAS  Google Scholar 

  116. N. Jaitanong, W.C. Vittayakorn, A. Chaipanich, Phase development and dielectric responses in PMN–BNT ceramics. Ceram. Int. 36, 1479–1483 (2010). https://doi.org/10.1016/j.ceramint.2010.01.003

    Article  CAS  Google Scholar 

  117. L. Wu, L. Tang, Y. Zhai, Y. Zhang, J. Sun, D. Hu, Z. Pan, Z. Su, Y. Zhang, J. Liu, Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0.875Nb0.1O3. J. Mater. (2022). https://doi.org/10.1016/j.jmat.2022.01.003

    Article  Google Scholar 

  118. C.M. Lau, X.W. Xu, K.W. Kwok, Photoluminescence, ferroelectric, dielectric and piezoelectric properties of Er-doped BNT–BT multifunctional ceramics. Appl. Surf. Sci. 336, 314–320 (2015). https://doi.org/10.1016/j.apsusc.2014.12.105

    Article  CAS  Google Scholar 

  119. D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 22, 2285–2294 (2012). https://doi.org/10.1002/adfm.201102758

    Article  CAS  Google Scholar 

  120. P. Chen, P. Li, J. Zhai, B. Shen, F. Li, S. Wu, Enhanced dielectric and energy-storage properties in BiFeO3-modified Bi0.5(Na0.8K0.2)0.5TiO3 thin films. Ceram. Int. 43, 13371–13376 (2017). https://doi.org/10.1016/j.ceramint.2017.07.039

    Article  CAS  Google Scholar 

  121. Y. Wu, X. Wang, L. Li, Effect of Sc doping on the structure and electrical properties of (Na0.85K0.15)0.5Bi0.5TiO3 thin films prepared by sol-gel processing. J. Am. Ceram. Soc. 94, 2518–2522 (2011). https://doi.org/10.1111/j.1551-2916.2011.04428.x

    Article  CAS  Google Scholar 

  122. J. Shi, X. Liu, W. Tian, High energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics. J. Mater. Sci. Technol. 34, 2371–2374 (2018). https://doi.org/10.1016/j.jmst.2018.06.008

    Article  CAS  Google Scholar 

  123. A. Hussain, C.W. Ahn, A. Ullah, J.S. Lee, I.W. Kim, Effects of hafnium substitution on dielectric and electromechanical properties of lead-free Bi0.5(Na0.78K0.22)0.5(Ti1xHfx)O3 ceramics. Jpn. J. Appl. Phys. 49, 41504 (2010). https://doi.org/10.1143/jjap.49.041504

    Article  Google Scholar 

  124. X.J. Zheng, J.Y. Liu, J.F. Peng, X. Liu, Y.Q. Gong, K.S. Zhou, D.H. Huang, Effect of potassium content on electrostrictive properties of Na0.5Bi0.5TiO3-based relaxor ferroelectric thin films with morphotropic phase boundary. Thin Solid Films 548, 118–124 (2013). https://doi.org/10.1016/j.tsf.2013.09.017

    Article  CAS  Google Scholar 

  125. C. Yang, J. Han, X. Cheng, X. Yin, Z. Wang, M. Zhao, C. Wang, Dielectric and ferroelectric properties of (Na0.8K0.2)0.5Bi0.5TiO3 thin films prepared by metalorganic solution deposition. Appl. Phys. Lett. 87, 192901 (2005). https://doi.org/10.1063/1.2126129

    Article  CAS  Google Scholar 

  126. C.C. Jin, F.F. Wang, Q.R. Yao, Y.X. Tang, T. Wang, W.Z. Shi, Enhanced ferroelectric and dielectric properties in (La0.7Ca0.3)MnO3-buffered (Bi0.5Na0.5)TiO3-based lead-free thin film by pulsed laser deposition. J. Alloys Compd. 553, 142–145 (2013). https://doi.org/10.1016/j.jallcom.2012.11.095

    Article  CAS  Google Scholar 

  127. R. Lu, J. Yuan, H. Shi, B. Li, W. Wang, D. Wang, M. Cao, Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. CrystEngComm 15, 3984–3991 (2013). https://doi.org/10.1039/C3CE40139A

    Article  CAS  Google Scholar 

  128. B. Li, M.-S. Cao, J. Liu, D.-W. Wang, Domain structure and enhanced electrical properties in sodium bismuth titanate ceramics sintered from crystals with different morphologies. J. Am. Ceram. Soc. 99, 2316–2326 (2016). https://doi.org/10.1111/jace.14211

    Article  CAS  Google Scholar 

  129. S. Zhang, B. Yang, W. Cao, The temperature-dependent electrical properties of Bi0.5Na0.5TiO3_BaTiOS_Bi0.5K0.5TiO3 near the morphotropic phase boundary. Acta Mater. 60, 469–475 (2012)

    Article  CAS  Google Scholar 

  130. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008). https://doi.org/10.1063/1.2955533

    Article  CAS  Google Scholar 

  131. M. Bousquet, J.-R. Duclère, C. Champeaux, A. Boulle, P. Marchet, A. Catherinot, A. Wu, P.M. Vilarinho, S. Députier, M. Guilloux-Viry, A. Crunteanu, B. Gautier, D. Albertini, C. Bachelet, Macroscopic and nanoscale electrical properties of pulsed laser deposited (100) epitaxial lead-free Na0.5Bi0.5TiO3 thin films. J. Appl. Phys. 107, 34102 (2010). https://doi.org/10.1063/1.3290956

    Article  CAS  Google Scholar 

  132. V. Dorcet, G. Trolliard, P. Boullay, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition. Chem. Mater. 20, 5061–5073 (2008). https://doi.org/10.1021/cm8004634

    Article  CAS  Google Scholar 

  133. C. Ang, Z. Yu, High, purely electrostrictive strain in lead-free dielectrics. Adv. Mater. 18, 103–106 (2006). https://doi.org/10.1002/adma.200500951

    Article  CAS  Google Scholar 

  134. K. McLaughlin, C. Pascual-Gonzalez, D. Wang, A. Feteira, Site occupancy and electric-field induced strain response of Er-doped (Bi0.4Na0.4Sr0.2)TiO3 ceramics. J. Alloys Compd. 779, 7–14 (2019). https://doi.org/10.1016/j.jallcom.2018.11.121

    Article  CAS  Google Scholar 

  135. L. Zhang, Z. Wang, Y. Li, P. Chen, J. Cai, Y. Yan, Y. Zhou, D. Wang, G. Liu, Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 39, 3057–3063 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.004

    Article  CAS  Google Scholar 

  136. L.K. Pradhan, R. Pandey, S. Kumar, M. Kar, Role of tricritical triple point type morphotropic phase boundary (multiple crystalline phases) on energy storage density in Bi0.5Na0.5TiO3 based solid solution. Mater. Res. Express. 6, 95521 (2019). https://doi.org/10.1088/2053-1591/ab30e9

    Article  CAS  Google Scholar 

  137. H. Zhao, X. Yang, D. Pang, X. Long, Enhanced energy storage efficiency by modulating field-induced strain in BaTiO3–Bi(Ni2/3Ta1/3)O3 lead-free ceramics. Ceram. Int. 47, 22734–22740 (2021). https://doi.org/10.1016/j.ceramint.2021.04.290

    Article  CAS  Google Scholar 

  138. X. Zhao, C. Li, J. Liu, Y. Ding, W. Bai, P. Zheng, P. Li, J. Zhang, J. Zhai, (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with simultaneous high energy storage properties and remarkable charge-discharge performances under low working electric fields for dielectric capacitor applications. Ceram. Int. 47, 25800–25809 (2021). https://doi.org/10.1016/j.ceramint.2021.05.308

    Article  CAS  Google Scholar 

  139. X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3–Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39, 4778–4784 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.003

    Article  CAS  Google Scholar 

  140. B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, Q. Li, Enhanced energy-storage performance and dielectric temperature stability of (1–x)(0.65Bi0.5Na0.5TiO30.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram. Int. 44(9), 10968–10974 (2018)

    Article  CAS  Google Scholar 

  141. D. Hu, Z. Pan, Z. He, F. Yang, X. Zhang, P. Li, J. Liu, Significantly improved recoverable energy density and ultrafast discharge rate of Na0.5Bi0.5TiO3-based ceramics. Ceram. Int. 46, 15364–15371 (2020). https://doi.org/10.1016/j.ceramint.2020.03.080

    Article  CAS  Google Scholar 

  142. H. Ji, D. Wang, W. Bao, Z. Lu, G. Wang, H. Yang, A. Mostaed, L. Li, A. Feteira, S. Sun, F. Xu, D. Li, C.-J. Ma, S.-Y. Liu, I.M. Reaney, Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater. 38, 113–120 (2021). https://doi.org/10.1016/j.ensm.2021.01.023

    Article  Google Scholar 

  143. K. Liu, Y. Zhang, M.A. Marwat, G. Wang, D. Wang, W. Ma, T. Wei, M. Li, J. Xu, H. Yang, S. Kongparakul, C. Samart, J. Zang, P. Fan, H. Zhang, Large electrostrain in low-temperature sintered NBT-BT-0.025FN incipient piezoceramics. J. Am. Ceram. Soc. 103, 3739–3747 (2020). https://doi.org/10.1111/jace.17058

    Article  CAS  Google Scholar 

  144. Y. Zhang, X. Liu, G. Wang, Y. Li, S. Zhang, D. Wang, H. Sun, Enhanced mechanical energy harvesting capability in sodium bismuth titanate based lead-free piezoelectric. J. Alloys Compd. 825, 154020 (2020). https://doi.org/10.1016/j.jallcom.2020.154020

    Article  CAS  Google Scholar 

  145. M. Höfling, S. Steiner, A.-P. Hoang, I.-T. Seo, T. Frömling, Optimizing the defect chemistry of Na1/2Bi1/2TiO3-based materials: paving the way for excellent high temperature capacitors. J. Mater. Chem. C 6, 4769–4776 (2018). https://doi.org/10.1039/C8TC01010B

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramani Supriya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supriya, S. A Review on Lead-Free-Bi0.5Na0.5TiO3 Based Ceramics and Films: Dielectric, Piezoelectric, Ferroelectric and Energy Storage Performance. J Inorg Organomet Polym 32, 3659–3676 (2022). https://doi.org/10.1007/s10904-022-02418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02418-6

Keywords

Navigation