Skip to main content
Log in

Basicity, Electronegativity, Optical Parameters and Radiation Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped Vanadium Ions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Glasses of chemical compositions 3As2O3-37PbO- (60-x)P2O5- xV2O5 (x = 0, 0.5, 1, 2, 4 and 5 mol%) are fabricated by traditional melt-quenching technique. The optical features are considered depending on measuring the absorption and transmission of the fabricated glasses. The indirect optical band gap varied between 4.48 and 3.11 eV, while the direct ones varied from 4.61 to 3.61 eV. Urbach energies were changed from 0.193 to 0.335 eV. Based on the obtained values of band gap, the refractive index was found to be increase with increase vanadium ions in the present glass and varies from 2.032 to 2.380. Basicity, polarizability, electronegativity and some physical constants are determined depending on experimental results. Also, the refractive index and optical band gap are calculated depending on the theoretical optical basicity and molar refractivity. Values of the optical basicity were varied from 1.11 to 1.31 with varying vanadium content from zero to 5 mol%. Static dielectric constant for the favricated glasses was varied from 4.72 to 8.94, while cohesive energy was varied from 1.37 to 1.68 eV/atom. Half value layer (HVL) and mean free path (MFP) were followed the trend: (HVL, MFP)V0% > (HVL, MFP)V0.5% > (HVL, MFP)V1% > (HVL, MFP)V2% > (HVL, MFP)V3% > (HVL, MFP)V5%. The electron number density (Neff) and effective conductivity (Ceff) were followed the trend: (Neff, Ceff)V0% < (Neff, Ceff)V0.5% < (Neff, Ceff)V1% < (Neff, Ceff)V2% < (Neff, Ceff)V3% < (Neff, Ceff)V5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All authors contribute in Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization.

References

  1. J.R. Jones, A.G. Clare, Bio-glasses: an introduction (Wiley, Chichester, 2012)

    Book  Google Scholar 

  2. M. Ren, S. Cai, W. Zhang, T. Liu, X. Wu, P. Xu, D. Wang, Preparation and chemical stability of CaO-P2O5-Na2O-B2O3 porous glass-ceramics. J. Non-Cryst. Solids 380, 78–85 (2013)

    Article  CAS  Google Scholar 

  3. J.H. Campbell, J.S. Hayden, A. Marker, High power solid-state lasers: a laser glass perspective. Int. J. App. Glass Sci. 2(1), 3–29 (2011)

    Article  CAS  Google Scholar 

  4. I. Ahmed, A.J. Parsons, G. Palmer, J.C. Knowles, G.S. Walker, C.D. Rudd, Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fbre/PCL composite. Acta Biomater 4, 1307–1314 (2008)

    Article  CAS  Google Scholar 

  5. S. Rosmawati, H.A.A. Sidek, A.T. Zainal, H.M. Zobir, IR and UV spectral studies of zinc tellurite glasses. J Appl Sci 7, 3051–3056 (2007)

    Article  CAS  Google Scholar 

  6. A. Madhu, B. Eraiah, P. Manasa, N. Srinatha, Nd3+ doped lanthanum lead borotellurite glass for lasing and amplification applications. Opt. Mater. (Amst) 75, 357–366 (2018)

    Article  CAS  Google Scholar 

  7. D. Yardımcı, M. Celikbilek, A.E. Ersundu, S. Aydin, Thermal and microstructural characterization and crystallization kinetic studies in the TeO2−B2O3 system. Mater. Chem. Phys. 137, 999–1006 (2013)

    Article  Google Scholar 

  8. V.M. Sglavo, E. Mura, D. Milanese, J. Lousteau, Mechanical properties of phosphate glass optical fibers. Int. J. Appl Glass Sci. 5(1), 57–64 (2014)

    Article  CAS  Google Scholar 

  9. R.K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids. 263–264, 1–28 (2000)

    Article  Google Scholar 

  10. K. Meyer, Characterisation of the structure of binary calcium ultraphosphate glasses by infrared and Raman spectroscopy. Phys. Chem. Glasses 39, 108 (1998)

    CAS  Google Scholar 

  11. S. Choi, J. Kim, J. Jung, H. Park, B. Ryu, Effect of substituting B2O3 for P2O5 in conductive vanadate glass. J. Korean Ceram. Soc. 52(2), 140–145 (2015)

    Article  CAS  Google Scholar 

  12. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3-Bi2O3-ZnO-CaO glasses. Ceram. Int. 45, 20724–20732 (2019)

    Article  CAS  Google Scholar 

  13. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125, 717 (2019)

    Article  Google Scholar 

  14. I.O. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys. Scr. 96, 065308 (2021)

    Article  Google Scholar 

  15. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications. Applied Physics A 126, 1–9 (2020)

    Article  Google Scholar 

  16. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. 46, 19078–19083 (2020)

    Article  CAS  Google Scholar 

  17. M.S. Al-Buriahi, V.P. Singh, A. Alalawi, C. Sriwunkum, B.T. Tonguc, Mechanical features and radiation shielding properties of TeO2-Ag2O-WO3 glasses. Ceram. Int. 46, 15464–15472 (2020)

    Article  CAS  Google Scholar 

  18. M.S. Al-Buriahi, Y.S.M. Alajerami, A.S. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Crystalline Solids 544, 120171 (2020)

    Article  CAS  Google Scholar 

  19. M.S. Al-Buriahi, H.H. Somaily, A. Alalawi, S. Alraddadi, Polarizability, optical basicity, and photon attenuation properties of Ag2O-MoO3-V2O5-TeO2 glasses: the role of silver oxide. J. Inorg. Organomet. Polym Mater. 31, 1047–1056 (2021)

    Article  CAS  Google Scholar 

  20. J.S. Alzahrani, M.A. Alothman, C. Eke, H. Al-Ghamdi, D.A. Aloraini, M.S. Al-Buriahi, Simulating the radiation shielding properties of TeO2-Na2O-TiO glass system using PHITS Monte Carlo code. Comput. Mater. Sci. 196, 110566 (2021)

    Article  CAS  Google Scholar 

  21. M.S. Al-Buriahi, S. Alomairy, C. Mutuwong, Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: an in silico study. J. Austr. Ceram. Soc. 57, 1–9 (2021)

    Google Scholar 

  22. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies. Polym. Adv Technol. 32, 2386–2396 (2021)

    Article  CAS  Google Scholar 

  23. M.S. Al-Buriahi, V.P. Singh, Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J. Aust. Ceram. Soc. 56, 1127–1133 (2020)

    Article  CAS  Google Scholar 

  24. Y.S. Rammah, F.I. El-Agawany, E.A.A. Wahab, M.M. Hessien, Kh.S. Shaaban, Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiat. Phys. Chem. 193, 109956 (2022)

    Article  CAS  Google Scholar 

  25. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  26. B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiat. Phys. Chem. 153, 86–91 (2018)

    Article  CAS  Google Scholar 

  27. M.S. Al-Buriahi, C. Eke, S. Alomairy, C. Mutuwong, N. Sfina, Micro-hardness and gamma-ray attenuation properties of lead iron phosphate glasses. J. Mater. Sci. 32, 1–11 (2021)

    Google Scholar 

  28. M.A. Alothman, I.O. Olarinoye, C. Sriwunkum, S. Alomairy, J.S. Alzahrani, M.S. Al-Buriahi, Study of the radiation attenuation properties of MgO-Al2O3-SiO2-Li2O-Na2O glass system. J. Aust. Ceram. Soc. 58, 1–7 (2021)

    Google Scholar 

  29. G.A. Alharshan, C. Eke, M.S. Al-Buriahi, Radiation-transmission and self-absorption factors of P2O5-SrO-Sb2O3 glass system. Radiat. Phys. Chem. 193, 109938 (2021)

    Article  Google Scholar 

  30. J.S. Alzahrani, Z.A. Alrowaili, H.H. Saleh, A. Hammoud, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Synthesis, physical and nuclear shielding properties of novel Pb-Al alloys. Prog. Nucl. Energy 142, 103992 (2021)

    Article  CAS  Google Scholar 

  31. M.S. Al-Buriahi, C. Eke, Z.A. Alrowaili, A.M. Al-Baradi, I. Kebaili, B.T. Tonguc, Optical properties and radiation shielding performance of tellurite glasses containing Li2O and MoO3. Optik 249, 168257 (2022)

    Article  CAS  Google Scholar 

  32. B. Alım, E. Şakar, A. Baltakesmez, İ Han, M.I. Sayyed, L. Demir, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiat. Phys. Chem. 166, 108455 (2020)

    Article  Google Scholar 

  33. A.A. El-Maaref, E.A.A. Wahab, K.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2020). https://doi.org/10.1016/j.saa.2020.11877

    Article  PubMed  Google Scholar 

  34. S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015). https://doi.org/10.1016/j.optmat.2015.04.026

    Article  CAS  Google Scholar 

  35. T.S. Moss, A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors proc. Phys. Soc. Sect. B 63(3), 167–176 (1950). https://doi.org/10.1088/0370-1301/63/3/302

    Article  Google Scholar 

  36. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Phys. Status Solidi B 93(2), K155–K160 (1979)

    Article  CAS  Google Scholar 

  37. P.J.L. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35(4), 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

    Article  CAS  Google Scholar 

  38. P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors Appl. Phys. 77(10), 5476–5477 (1995). https://doi.org/10.1063/1.359248

    Article  CAS  Google Scholar 

  39. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama, H. Abid, Model for calculating the refractive index of a III–V semiconductor. Comput. Mater. Sci 41, 570–757 (2008). https://doi.org/10.1016/j.commatsci.2007.05.023

    Article  CAS  Google Scholar 

  40. V. Kumar, J.K. Singh, Model for calculating the refractive index of different materials. Ind. J. Pure and Appl. Phys. 48, 571–574 (2010)

    CAS  Google Scholar 

  41. R. Reddy, Y.N. Ahammed, K.R. Gopal, D. Raghuram, Optical electronegativity and refractive index of materials. Optical Mater. 10(2), 95–100 (1998). https://doi.org/10.1016/s0925-3467(97)00171-7

    Article  CAS  Google Scholar 

  42. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides, II. J Appl. Phys. 79, 1741–1745 (1996). https://doi.org/10.1063/1.360963

    Article  CAS  Google Scholar 

  43. S. Adachi, Optical properties, properties of group-IV, III-V and II-VI semiconductors (Chichester, UK, John Wiley & Sons Ltd, 2005), pp. 211–281

    Google Scholar 

  44. A.H. Hammad, E.B. Moustafa, Study some of the structural, optical, and damping properties of phosphate glasses containing borate. J. Non-Cryst. Solids 544, 120209 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120209

    Article  CAS  Google Scholar 

  45. E.A.A. Wahab, Kh.S. Shaaban, Structural and optical features of aluminum lead borate glass doped with Fe2O3. Appl. Phys. A 127, 956 (2021). https://doi.org/10.1007/s00339-021-05062-y

    Article  CAS  Google Scholar 

  46. T. Tasheva, V. Dimitrov, Optical properties and chemical bonding of TiO2-BaO-V2O5 glasses. J. Chem. Technol. Metall. 51(5), 525–535 (2016)

    CAS  Google Scholar 

  47. J.A. Duffy, Electronic polarizability and related properties of the oxide ions. Phys. Chem. Glasses 30, 1–4 (1989)

    CAS  Google Scholar 

  48. J.A. Duffy, Chemical bonding in the oxides of the elements: A new appraisal. J. Solid State Chem. 62, 145–157 (1986)

    Article  CAS  Google Scholar 

  49. http://www.schott.com/advanced_optics/english/products/opticalmaterials/special-materials/radiation-shielding-glasses/index.html.

  50. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/84), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the first draft of the manuscript. All authors edited the manuscript and approved the final version.

Corresponding authors

Correspondence to E. A. Abdel Wahab or Y. S. Rammah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, E.A.A., Ahmed, E.M., Rammah, Y.S. et al. Basicity, Electronegativity, Optical Parameters and Radiation Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped Vanadium Ions. J Inorg Organomet Polym 32, 3983–3996 (2022). https://doi.org/10.1007/s10904-022-02400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02400-2

Keywords

Navigation