Skip to main content
Log in

Selective Determination of Catechol Using One Dimensional Zeolitic Cobalt–Nickel Imidazolate Framework

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The bi-metallic zeolitic imidazole framework (ZIF) exhibits greater attention because of its attractive physicochemical properties. Herein, we report the non-enzymatic selective electrochemical detection of catechol (CC) using cobalt–nickel zeolitic imidazolate framework nanofibres (Ni-ZIF-67 NFs) fabricated by the electrospinning route. Owing to donor–acceptor and hydrogen bonding interactions between the metal ions and imidazole, forming tetrahedral coordination with an increased crystalline state further provides excellent mechanical stability. The porous nature of the Ni-ZIF-67 NFs sample gives good catalytic property; as a result, the response of nanofibre composite is linearly proportional to the concentration of CC in the range of 10 nM–1 mM with the detection limit of 4 nM. The prepared electrode shows good anti-interference ability and reproducibility. Finally, the fabricated electrode has been successfully utilized for the detection of targeted analytes for real-time sample analysis i.e. tea and coffee samples with significant results.

Graphical abstract

Ni-ZIF-67 NFs have been successfully fabricated by electrospinning method and utilized for the detection of catechol. The bi-metallic ZIF material shows high stability, improved electrocatalytic behaviour having a detection range of 10 nM–1 mM with the detection limit of 4 nM should be useful further for diverse bio-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.M. Sousa, L.M. Vilarinho, G.H. Ribeiro, A.L. Bogado, L.R. Dinelli, R. Soc, Open Sci. 4, 1 (2017)

    Google Scholar 

  2. S.A.B. Bukhari, H. Nasir, L. Pan, M. Tasawar, M. Sohail, M. Shahbaz, F. Gul, E. Sitara, Sci. Rep. 11, 5044 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Sandeep, A.S. Santhosh, N.K. Swamy, G.S. Suresh, J.S. Melo, Port. Electrochim. Acta 37, 257 (2019)

    Article  CAS  Google Scholar 

  4. B.L. Lee, H.Y. Ong, C.Y. Shi, C.N. Ong, J. Chromatogr. B Biomed. Sci. Appl. 619, 259 (1993)

    Article  CAS  Google Scholar 

  5. J. Adounkpe, M. Aina, D. Mama, B. Sinsin, ISRN Environ. Chem. 2013, 1 (2013)

    Article  Google Scholar 

  6. L. Zhao, B. Lv, H. Yuan, Z. Zhou, D. Xiao, Sensors 7, 578 (2007)

    Article  CAS  PubMed Central  Google Scholar 

  7. S. Nsanzamahoro, F.P. Mutuyimana, Y. Han, S. Ma, M. Na, J. Liu, Y. Ma, C. Ren, H. Chen, X. Chen, Sensors Actuators. B Chem. 281, 849 (2019)

    CAS  Google Scholar 

  8. D.W. Barnum, Anal. Chim. Acta 89, 157 (1977)

    Article  CAS  PubMed  Google Scholar 

  9. Y.H. Huang, J.H. Chen, L.J. Ling, Z.B. Su, X. Sun, S.R. Hu, W. Weng, Y. Huang, W.B. Wu, Y.S. He, Analyst 140, 7939 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. J. Tang, R. Liu, J. Li, Z. Hui, S. Zheng, J. Wu, J. Guo, X. Wang, J. Wang, J. Electrochem. Soc. 167, 067504 (2020)

    Article  CAS  Google Scholar 

  11. K.J. Huang, L. Wang, J. Li, M. Yu, Y.M. Liu, Microchim. Acta 180, 751 (2013)

    Article  CAS  Google Scholar 

  12. A. Maikap, K. Mukherjee, B. Mondal, N. Mandal, RSC Adv. 6, 64611 (2016)

    Article  CAS  Google Scholar 

  13. C. Salvo-Comino, F. Martin-Pedrosa, C. Garcia-Cabezon, M.L. Rodriguez-Mendez, Sensors (Switzerland) 21, 1 (2021)

    Article  Google Scholar 

  14. H.S. Han, J.M. You, H. Seol, H. Jeong, S. Jeon, Sensors Actuators. B Chem. 194, 460 (2014)

    CAS  Google Scholar 

  15. K. Chetankumar, B.E.K. Swamy, T.S.S.K. Naik, J. Mater. Sci. Mater. Electron. 31, 19728 (2020)

    Article  Google Scholar 

  16. X. Luo, R. Abazari, M. Tahir, W. Keen, A. Kumar, T. Kalhorizadeh, Coord. Chem. Rev. 461, 214505 (2022)

    Article  CAS  Google Scholar 

  17. A.R. Woldu, Z. Huang, P. Zhao, L. Hu, D. Astruc, Coord. Chem. Rev. 454, 214340 (2022)

    Article  CAS  Google Scholar 

  18. Y. Zhou, R. Abazari, J. Chen, M. Tahir, A. Kumar, R.R. Ikreedeegh, E. Rani, H. Singh, A.M. Kirillov, Coord. Chem. Rev. 451, 214264 (2022)

    Article  CAS  Google Scholar 

  19. J.Z. Gu, X.X. Liang, Y.H. Cui, J. Wu, Z.F. Shi, A.M. Kirillov, CrystEngComm 19, 2570 (2017)

    Article  CAS  Google Scholar 

  20. L.-Z. Yang, J. Wang, A.M. Kirillov, W. Dou, C. Xu, R. Fang, C.-L. Xu, W.-S. Liu, CrystEngComm 18, 6425 (2016)

    Article  CAS  Google Scholar 

  21. M. Li, W. Feng, W. Su, X. Wang, J. Solid State Electrochem. 23, 2317 (2019)

    Article  CAS  Google Scholar 

  22. X. Li, J. Wang, InfoMat 2, 3 (2020)

    Article  Google Scholar 

  23. P.K. Kannan, S.A. Moshkalev, C.S. Rout, RSC Adv. 6, 11329 (2016)

    Article  CAS  Google Scholar 

  24. S. Rani, S. Kapoor, B. Sharma, S. Kumar, R. Malhotra, N. Dilbaghi, J. Alloys Compd. 816, 152509 (2020)

    Article  CAS  Google Scholar 

  25. B. Shen, B. Wang, L. Zhu, L. Jiang, Nanomaterials 10, 1 (2020)

    CAS  Google Scholar 

  26. S. Girija, S.S. Sankar, S. Kundu, J. Wilson, J. Electrochem. Soc. 167, 137511 (2020)

    Article  CAS  Google Scholar 

  27. P. Arul, E. Narayanamoorthi, S.A. John, Sensors actuators. B Chem. 313, 128033 (2020)

    CAS  Google Scholar 

  28. J. Tang, R.R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S.M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J.H. Kim, Y. Yamauchi, Sci. Rep. 6, 3 (2016)

    Article  Google Scholar 

  29. Y. Wen, Z. Wei, C. Ma, X. Xing, Z. Li, D. Luo, Nanomaterials 9, 1 (2019)

    Google Scholar 

  30. S.S. Sankar, S.R. Ede, S. Anantharaj, K. Karthick, K. Sangeetha, S. Kundu, Catal. Sci. Technol. 9, 1847 (2019)

    CAS  Google Scholar 

  31. T. Thenrajan, S.S. Sankar, S. Kundu, J. Wilson, Colloid Polym. Sci. 300, 223 (2022)

    Article  CAS  Google Scholar 

  32. D. Radhakrishnan, C. Narayana, J. Chem. Phys. 144, 4 (2016)

    Article  Google Scholar 

  33. F. Melak, M. Redi, M. Tessema, E. Alemayehu, Nat. Sci. 05, 888 (2013)

    Google Scholar 

Download references

Acknowledgements

The author JW gratefully acknowledges the RUSA 2.0 [F.24-51/2014-U, Policy (TN Multi-Gen), Dept. of. Edn, Gol] for Financial assistance.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to SubrataKundu or J. Wilson.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girija, S., Sankar, S.S., SubrataKundu et al. Selective Determination of Catechol Using One Dimensional Zeolitic Cobalt–Nickel Imidazolate Framework. J Inorg Organomet Polym 32, 3837–3847 (2022). https://doi.org/10.1007/s10904-022-02392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02392-z

Keywords

Navigation