Skip to main content
Log in

Nanoarchitectonics of Lead-Free Ba0.97La0.02Ti(1-x)Nb4x/5O3 Based Ceramic with Dielectrical and Raman Scattering Properties Studies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Monophasic, polycrystalline sample of Ba0.97La0.02Ti0.93Nb0.056O3 (termed as BLTi0.93Nb0.056) ceramic belonging to the space group P4/mmm has been prepared by appropriate chemical molten-salt-flux process, at the sintering temperature of 800 °C. Raman analyses and absorption spectra have indicated that the Nb5+ ions are incorporated sufficiently into the BLTi0.93Nb0.056-lattice. Raman spectroscopy is well suited as a non-destructive, preparation-free, and easy-to-handle means for species identification and site-occupancy analysis in our ceramic. As of the absorption spectra, the optical band gap (Eg), refractive index and Urbach energy (Eu) values have designed. The frequency (f) and temperature (T) dependence of the dielectric properties proved excellent outcomes. The real part of permittivity and dielectric tangent reduced with intensifying-(f). This upshot illuminates by a testimony of Maxwell–Wagner type of polarization as per with Koop’s theory. The temperature dependence of the dielectric properties was examined three parts are begun from phase transitions. To clarify the dielectric phenomenon, the Curie–Weiss laws have investigated. This demonstration is used to describe the ferro-paraelectric transition. The degree of disorder of the BLTi0.93Nb0.056 was assessing via the modified Curie–Weiss law. The enhanced dielectric and optical properties of the as-prepared ceramic define a proof to its excellence as a prospect material for devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Derived data supporting the findings of this study are available from the corresponding author upon request.

References

  1. K. Uchino, Ferroelectric Devices (Marcel Dekker Inc, New York, 2000)

    Google Scholar 

  2. A.J. Moulson, J.M. Herbert, Electroceramics (Wiley Press, New York, 2003)

    Book  Google Scholar 

  3. R.C. Buchanan, Ceramic Materials for Electronics Processing, Properties, and Applications (Marcel Dekker Inc, New York, 1991)

    Google Scholar 

  4. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  5. H. Kishi, Y. Mizuno, H. Chazono, JSPA Int. 42, 5 (2003)

    Google Scholar 

  6. Yoon et al., J. Am. Ceram. Soc. 83(10), 2463–2472 (2000)

    Article  CAS  Google Scholar 

  7. P.K. Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, Enhanced dielectric properties of doped barium titanate ceramics. J. Phys. Chem. Solids 74, 545–549 (2013)

    Article  Google Scholar 

  8. M. Jebli et al., Structural and morphological studies, and temperature/frequency dependence of electrical conductivity of Ba0.97La0.02Ti1−xNb4x/5O3 perovskite ceramics. RSC Adv. 11(38), 23664–23678 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Jebli et al., Effect of Nb-doping on the structural and electrical properties of Ba0.97La0.02Ti1-xNb4x/5O3 ceramics at room temperature synthesized by molten-salt method. J. Alloy. Compd. 784, 204–212 (2019)

    Article  CAS  Google Scholar 

  10. M. Jebli et al., Investigation of electrical properties and conduction mechanism using CBH model of Ba0.97La0.02Ti1−xNb4x/5O3 (x = 0.00 and 0.02) compounds. Appl. Phys. A 126(2), 1–16 (2020)

    Article  Google Scholar 

  11. M. Jebli et al., An investigation of the temperature-and frequency-dependent conductivity behavior and electrical properties of Ba0.97La0.02Ti0.9Nb0.08O3 compound using impedance spectroscopy. J. Mol. Struct. 1254, 132238 (2022)

    Article  CAS  Google Scholar 

  12. Y.R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  13. M. Jebli et al., Raman spectra, photoluminescence, and low-frequency dielectric properties of Ba0.97La0.02Ti1−xNb4x/5O3 (x = 0.00, 0.05) ceramics at room temperature. J. Mater. Sci. 31(18), 15296–15307 (2020)

    CAS  Google Scholar 

  14. D. Schutz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Lone-pairinduced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 22, 2285–2294 (2012)

    Article  Google Scholar 

  15. M. Jebli et al., Diffuse phase transition and dielectric tunability of Ba0.97La0.02TiO3 relaxor ferroelectric ceramic. J. Inorg. Organometall. Polym. Mater. 32, 1–20 (2022)

    Google Scholar 

  16. D.A. Tenne, I.E. Gonenli, A. Soukiassian, D.G. Schlom, S.M. Nakhmanson, K.M. Rabe, X.X. Xi, Raman study of oxygen reduced and re-oxidized strontium titanate. Phys. Rev. B 76, 024303 (2007)

    Article  Google Scholar 

  17. H. Harima, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14, 967–993 (2002)

    Article  Google Scholar 

  18. S. Nakashima, H. Harima, Characterization of defects in SiC crystals by Raman scattering, in Silicon Carbide Advanced Texts in Physics. ed. by W.J. Choyke, H. Matsunami, G. Pensl (Springer, Berlin, 2004), pp. 585–605

    Chapter  Google Scholar 

  19. T. Wu, J. Lin, Transition of compensating defect mode in niobium-doped barium titanate. J. Am. Ceram. Soc. 77, 759–764 (1994)

    Article  CAS  Google Scholar 

  20. F.J. Crowne, S.C. Tidrow, D.M. Potrepka, A. Tauber, Microfields induced by random compensated charge pairs in ferroelectric materials, in: MRS Proc. 720 (2002)

  21. M. Jebli et al., Frequency and thermal studies of dielectric permittivity and Raman analysis of Ba0.97La0.02Ti0.98Nb0.016O3. J. Mater. Sci. 31(24), 22323–22339 (2020)

    CAS  Google Scholar 

  22. C. Rayssi et al., Experimental-structural study, Raman spectroscopy, UV-visible, and impedance characterizations of Ba0.97La0.02Ti0.9Nb0.08O3 polycrystalline sample. J. Mol. Struct. 1249, 131539 (2022)

    Article  CAS  Google Scholar 

  23. S. Wada, T. Suzuki, M. Osada, M. Kakihana, T. Noma, Change of macroscopic and microscopic symmetry of barium titanate single crystal around curie temperature. Jpn. J. Appl. Phys. 37, 5385–5393 (1998)

    Article  CAS  Google Scholar 

  24. A. Watenphul et al., Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Am. Mineral. 101(4), 970–985 (2016)

    Article  Google Scholar 

  25. J. Pokorńy, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109, 114110 (2011)

    Article  Google Scholar 

  26. H.M. Jang, T. Kim, I. Park, Nano-sized polar clusters with tetragonal symmetry in PbTiO3-based relaxor ferroelectrics. Solid State Commun. 127, 645–648 (2003)

    Article  CAS  Google Scholar 

  27. J.C. Sczancoski, L.S. Cavalcante, T. Badapanda, S.K. Rout, S. Panigrahi, V.R. Mastelaro, J.A. Varela, M.S. Li, E. Longo, Structure and optical properties of [Ba1exY2x/3](Zr0.25Ti0.75)O3 powders. J. Sol. Stat. Sci. 12, 1160–1167 (2010)

    Article  CAS  Google Scholar 

  28. A.S. Chaves, R.S. Katiyar, S.P.S. Porto, Coupled modes with A1 symmetry in tetragonal BaTiO3. Phys. Rev. B 10, 3522 (1974)

    Article  CAS  Google Scholar 

  29. D.F.K. Hennings, H. Schreinemacher, Ca-acceptors in dielectric ceramics sintered inreductive atmospheres. J. Eur. Ceram. Soc. 15, 795–800 (1995)

    Article  CAS  Google Scholar 

  30. M.P. Fontana, M. Lambert, Linear disorder and temperature dependence of Raman scattering in BaTiO3. Solid State Commun. 10, 1–4 (1972)

    Article  CAS  Google Scholar 

  31. S.K. Gagandeep, B.S. Lark, H.S. Sahota, Attenuation measurements in solutions of some carbohydrates. Nucl. Sci. Eng. 134, 208–217 (2000)

    Article  CAS  Google Scholar 

  32. J. Marwa et al., Molten salt flux synthesis, structure determination, optical, impedance and modulus spectroscopy characterization of perovskite compound. J. Mol. Struct. 1260, 132788 (2022)

    Article  Google Scholar 

  33. G.D. Cody, Semiconductors and Semimetals, in: J.I. Pankove (Ed.), Academic, 21B, 1984 (Chapter 2)

  34. K. Mondal, P. Kumari, J. Manam, Influence of doping and annealing temperature on the structural and optical properties of Mg2SiO4:Eu3+ synthesized by combustion method. Curr. Appl. Phys. 16, 707–719 (2016)

    Article  Google Scholar 

  35. M. Jebli et al., Nanoarchitectonics of niobium-doped, lead-free BLT (Ba0.97La0.02Ti0.98Nb0.016O3) for electrical properties with unusual dc bias voltage independence. J. Inorg. Organomet. Polym. Mater. 32, 1681 (2022)

    Article  CAS  Google Scholar 

  36. M. Jebli et al., Effect of Nb substitution on the structural, dielectric and modulus character of Ba0.97La0.02TiO3 ceramics. Inorg. Chem. Commun. 129, 108628 (2021)

    Article  CAS  Google Scholar 

  37. M. Jebli et al., Analysis of the structural characterization, electric transport, and dielectrical relaxation behavior of Ba0.97La0.02Ti0.95Nb0.04O3 electronic ceramic. J. Inorg. Organometall. Polym. Mater. 32, 1766–1777 (2022)

    Article  CAS  Google Scholar 

  38. K. Parida, S. Das, P.K. Mahaptra, R.N.P. Choudhary, Relaxor behavior and impedance spectroscopic studies of chemically synthesized SrCu3Ti4O12 ceramic. Mater. Res. Bull. 111, 7–16 (2019)

    Article  CAS  Google Scholar 

  39. T. Dechakupt et al., Ferroelectrics 415, 141–148 (2011)

    Article  CAS  Google Scholar 

  40. Z. Wang, J. Guo, W. Hao, E. Cao, Y. Zhang, L. Sun, X. Panpan, Microstructures and dielectric properties of sol-gel prepared K-doped CaCu3Ti4O12 ceramics. J. Electroceram. 40, 115–121 (2018)

    Article  CAS  Google Scholar 

  41. N.K. Singh, A. Panigrahi, R.N.P. Choudhary, Structural and dielectric properties of Ba5EuTi3− xZrxNb7O30 relaxor ferroelectrics. Mater. Lett. 50(1), 1–5 (2001)

  42. T. Kar, R.N.P. Chaudhary, Mater. Sci. Eng. B 90, 224–233 (2002)

  43. G. Murugesan, R. Nithya, S. Kalainathan, S. Hussain, High temperature dielectric relaxation anomalies in Ca0.9Nd0.1Ti0.9Al0.1O3−δ single crystals. RSC Adv. 5, 78414–78421 (2015)

    Article  CAS  Google Scholar 

  44. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  45. C.G. Koops, Phys. Rev 6, 108 (1997)

    Google Scholar 

  46. K. Randeep et al., J. Asian Ceram. Soc. 7(3), 284–297 (2019)

    Article  Google Scholar 

  47. G. Catalan, Magnetocapacitance without magneto-electric coupling. Appl Phys Lett. 88(10), 102902 (2006)

    Article  Google Scholar 

  48. N.V. Prasad, G. Prasad, T. Bhimasankaran, S.V. Suryanarayana, G.S. Kumar, Bull. Mater. Sci. 19, 639–643 (1996)

    Article  CAS  Google Scholar 

  49. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, RSC Adv. 7, 16319–16331 (2017)

    Article  CAS  Google Scholar 

  50. S. Sil, J. Datta, M. Das, R. Jana, S. Halder, A. Biswas, D. Sanyal, P.P. Ray, Bias dependent conduction and relaxation mechanism study of Cu5FeS4 film and its significance in signal transport network. J. Mater. Sci. 29, 5014–5024 (2018)

    CAS  Google Scholar 

  51. A. Singh, R. Chatterjee, S.K. Mishra et al., Origin of large dielectric constant in La modified BiFeO3-PbTiO3 multiferroic. J. Appl. Phys. 111, 014113–014117 (2012)

    Article  Google Scholar 

  52. T. Wang, J. Hu, H. Yang et al., Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. J. Appl. Phys. 121, 084103 (2017)

    Article  Google Scholar 

  53. Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q. Zheng, J.-K. Kim, Carbon 123, 385–394 (2017)

    Article  CAS  Google Scholar 

  54. T. Badapanda, S. Sarangi, S. Parida et al., Frequency and temperature dependence dielectric study of strontium modified barium zirconium titanate ceramics obtained by mechanochemical synthesis. J Mater Sci. 26(5), 3069–3082 (2015)

    CAS  Google Scholar 

  55. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D 38, 1450–1460 (2005)

    Article  CAS  Google Scholar 

  56. R. Epherre, J. Lesseur, M. Albino, P. Veber, A. Weibel, G. Chevallier, M. Maglione, D. Bernard, C. Elissalde, C. Estournes, Scr. Mater. 110, 82–86 (2016)

    Article  CAS  Google Scholar 

  57. A. Hörnell et al., J. Am. Ceram. Soc. 90, 477–482 (2007)

    Article  Google Scholar 

  58. M. Pereira et al., J. Eur. Ceram. Soc. 21, 1353–1356 (2001)

  59. I.G. Siny, C.S. Tu, V.H. Schmidt, Phys. Rev. B 51, 5659–5665 (1995)

    Article  CAS  Google Scholar 

  60. J. Suchanicz, J. Ferroelectr. 209, 561–568 (1998)

    Article  CAS  Google Scholar 

  61. A. Ben-Hassen et al., J. Alloys Compd. 663, 436–443 (2016)

    Article  CAS  Google Scholar 

  62. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  CAS  Google Scholar 

  63. J. Ravez, C. Broustera, A. Simon, J. Mater. Chem. 9, 1609 (1999)

    Article  CAS  Google Scholar 

  64. G. Li et al., J. Solid State Chem. 177, 1695–1703 (2004)

    Article  CAS  Google Scholar 

  65. K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55 (1982)

    Article  CAS  Google Scholar 

  66. A. Mannam, K.R. Kazmi, M.S. Khan, I.H. Khan, Pak. J. Sci. Ind. Res. 49, 72 (2006)

    Google Scholar 

  67. G.A. Smolenskii, J. Phys. Soc. Jpn. 28, 26–37 (1970)

    Google Scholar 

  68. M. Jebli et al., Frequency-temperature response of Ba0.97La0.02Ti0.95Nb0.04O3 ceramic prepared by molten-salt method: impedance and modulus spectroscopy characterization. J. Mater. Sci 32(22), 26786–26797 (2021)

    CAS  Google Scholar 

  69. Y. Zhang, H. Sunn, W. Chen, Ceram. Int. 41, 8520–8532 (2015)

    Article  CAS  Google Scholar 

  70. K. Li, X.L. Zhu, X.Q. Liu, X.M. Chen, Appl. Phys. Lett. 100, 012902 (2012)

    Article  Google Scholar 

  71. C. Rayssi et al., RSC Adv. 8, 17139–17150 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Jebli.

Ethics declarations

Conflict of interest

The authors declare that they have not any known financial interests or personal relationships that could have an influence upon the presented work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebli, M., Dhahri, J., Hamdaoui, N. et al. Nanoarchitectonics of Lead-Free Ba0.97La0.02Ti(1-x)Nb4x/5O3 Based Ceramic with Dielectrical and Raman Scattering Properties Studies. J Inorg Organomet Polym 32, 3708–3724 (2022). https://doi.org/10.1007/s10904-022-02364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02364-3

Keywords

Navigation