Skip to main content
Log in

Structural, Optical and Electrical Conductivity Studies in Polycarbazole and its Metal Oxide Nano Composites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polycarbazole (PCz) has been synthesized by chemical oxidation method using APS as an oxidizing agent and PCz/CuO and PCz/Fe2O3 nanocomposites by in situ polymerization method for different wt% of CuO and Fe2O3 at room temperature. XRD patterns confirmed crystalline nature of samples. FTIR indicated strong interaction between PCz and nano fillers. The morphological and optical absorption studies were carried out using SEM and UV–Vis respectively. Addition of CuO or Fe2O3 to PCz decreased its direct and indirect band gaps. However, band gap showed a small change with dopant contents up to 30%. Urbach energy decreased with the addition of dopants. But Urbach energy of the composites increased with increasing dopants content from 10 to 30%. DC conductivity of PCz and its nanocomposites has been measured by following two probe technique in the temperature range 300–423 K. The conductivity of both the nanocomposites is found to be less than the pure PCz and it is found to increase with wt% of CuO or Fe2O3 as the case may be. The activation energy has been determined by fitting Arrhenius expression to the dc conductivity data at high temperature. The activation energy of polycarbazole is determined to be less than that of the composites. In both the composites, activation energy decreased and conductivity increased with the increase of dopant content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.C. Santos, O.H.C. Hamdan, S.A. Valverde, E.M. Bianchi, Synthesis and characterization of V2O5/PANI thin films for application in amperometric ammonia gas senors. Organic Electron 65, 116–120 (2019)

    Article  CAS  Google Scholar 

  2. K.M. Zaidan, H.F. Hussein, R.A. Hassan, Synthesis and characterization of (Pani/n-si) solar cell. Energy Procedia 6, 85–91 (2011). https://doi.org/10.1016/j.egypro.2011.05.010

    Article  CAS  Google Scholar 

  3. M. Gokcen, T. Tunc, S. Altindal, I. Uslu, Electrical and photocurrent characteristics of Au/PVA (Co-doped)/n-Si Photoconductive diodes. Mater. Sci. Eng., B 177(5), 416–420 (2012). https://doi.org/10.1016/j.mseb.2012.01.004

    Article  CAS  Google Scholar 

  4. B. Muthulakshmi, D. Kalpana, S. Pitchumani, N.G. Renganathan, Electrochemical deposition of polypyrrole for symmetric supercapacitors. J. Power Sour. 158(2), 1533–1537 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.013

    Article  CAS  Google Scholar 

  5. P. Burgmayer, R.W. Murray, Faster ion gate membranes. J. Electroanal. Chem. 147, 339–344 (1983). https://doi.org/10.1016/S0022-0728(83)80080-1

    Article  CAS  Google Scholar 

  6. J.M. Sansinena, J. Gao, H.L. Wang, High-performance, monolithic polyaniline electrochemical actuators. Adv. Func. Mater. 13(9), 703–709 (2003). https://doi.org/10.1002/adfm.200304347

    Article  CAS  Google Scholar 

  7. S.T. Doslu, B.D. Mert, B. Yazici, Polyindole top coat on TiO2 sol-gel films for corrosion protection of steel. Corros. Sci. Colume 66, 51–58 (2013). https://doi.org/10.1016/j.corsci.2012.08.067

    Article  CAS  Google Scholar 

  8. C. Qi, O.M. Lu, P. Hemmershoj, D. Zhou, Y. Han, B. Laursen, C.G. Yan, B. Han, Micro porous polycarbazole with high specific surface area for gas storage and separation. J. Am. Chem. Soc 134, 6084–6087 (2012). https://doi.org/10.1021/ja300438w

    Article  CAS  Google Scholar 

  9. A. Zahoor, T. Qiu, J. Zhang, Synthesis and characterization of Ag@polycarbazole nanopaticles and their novel optical behavior. J. Mater. Sci. 44, 6054–6059 (2009). https://doi.org/10.1007/s10853-009-3831-y

    Article  CAS  Google Scholar 

  10. U. Baig, A.W. Waseem, L.T. Hun, Facile synthesis of electrically conductive polycarbazole-zirconium(IV)phosphate cation exchange nanocomposite and its room temperature ammonia sensing performance. New J. Chem 20, 1–27 (2015). https://doi.org/10.1039/C5NJ01029B

    Article  CAS  Google Scholar 

  11. A. Srivatava, P. Chakrabarti, Fabrication and electrical characterization of a polycarbazole/ZnO based organic and inorganic hybride heterojunction diode. Superlattices Microstruct. 88, 723–730 (2015). https://doi.org/10.1016/j.spmi.2015.10.035

    Article  CAS  Google Scholar 

  12. L.N. Shubha, P. Madhusudana Rao, Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide- doped polyaniline composite. J. Adv. Dielectr. (2016). https://doi.org/10.1142/S2010135X16500181

    Article  Google Scholar 

  13. A.M. El Sayed, W.M. Morsi, α-Fe2O3/(PVA + PEG) Nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49, 5378–5387 (2014). https://doi.org/10.1007/s10853-014-8245-9

    Article  CAS  Google Scholar 

  14. J. Yan, M. Li, H. Wang, X. Lian, Y. Fan, Z. Xie, B. Niu, W. Li, preparation and property studies of chitosan-PVA biodegradable antibacterial multiplayer films doped with Cu2O and nano-chitosan composites. Food Control 126, 108049 (2021). https://doi.org/10.1016/j.foodcont.2021.108049

    Article  CAS  Google Scholar 

  15. J. Zhang, D. Shu, T. Zhang, H. Chen, H. Zhao, Y. Wang, Z. SUN, T. Shaoqing, X. Fang, X.U. Cao, Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route. J. Alloys Compd. 532, 1–9 (2021). https://doi.org/10.1016/j.jallcom.2012.04.006

    Article  CAS  Google Scholar 

  16. A. De, A. Das, S. Lahiri, Heavy ion irradiation on conducting polypyrrole and ZrO2-polypyrrole nanocomposites. Synth. Met. 144(3), 303–307 (2004). https://doi.org/10.1016/j.synthmet.2004.04.006

    Article  CAS  Google Scholar 

  17. M.O. Ansari, F. Mohammad, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide(pTSA/Pani:TiO2) nanocomposites. Sens. Actuators, B Chem. 157(1), 122–129 (2011). https://doi.org/10.1016/j.snb.2011.03.036

    Article  CAS  Google Scholar 

  18. P. Manivel, S. Ramakrishnan, N.K. Kothukar, A. Balamurugan, N. Ponpandian, D. Mangalaraj, C. Viswanathan, Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Mater. Res. Bull. (2013). https://doi.org/10.1016/j.materresbull.2012.11.033

    Article  Google Scholar 

  19. S. Ashokan, P. Jayamurugan, V. Ponnuswamy, Effects of CuO and oxidant on the morphology and conducting properties of PANI:CuO hybrid nanocomposites for humidity sensor application. Polym. Sci. 61, 86–97 (2019)

    CAS  Google Scholar 

  20. G. Rajasudha, L.M. Jayan, D. Durga Lakshmi, P. Thangadurai, N. Boukos, V. Narayanan, A. Stephen, Polyindole-CuO composite polymer electrolyte containing LiClo4 for lithium ion polymer batteries. Polym. Bull. (2012). https://doi.org/10.1007/s00289-011-0548-1

    Article  Google Scholar 

  21. K. Malook, I. Haque, M. Khan, M. Ali, Polypyrrole-Cuo based composites, promotional effects of CuO contents on polypyrrole characteristics. J. Mater. Sci.: Mater. Electron. 30, 3882–3888 (2019). https://doi.org/10.1007/s10854-019-00673-x

    Article  CAS  Google Scholar 

  22. R. Gangopadhyaya, A. De, S. Das, Transport properties of polypyrrole-ferric oxide condcucting nanocomposite. J. Appl. Phys. 87, 2363 (2000). https://doi.org/10.1063/1.372188

    Article  Google Scholar 

  23. R. Ganesan, D. Dhinasekaran, P. Thangadurai, N. Boukos, N. Vengidusamy, S. Arumainathan, Preparation and characterizaton of polyindole-iron oxide composite polymer electrolyte containing LiClO4. Polym.-Plast. Technol. Eng. 51, 225–230 (2012). https://doi.org/10.1080/03602559.2011.618159

    Article  CAS  Google Scholar 

  24. N.C. Horti, M.D. Kamatagi, N.R. Patil, S.K. Nataraj, S.A. Patil, S.R. Inamdar, Synthesis and photoluminescence properties of polycarbazole/tin oxide (PCz/SnO2) polymer nanocomposites. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03428-5

    Article  Google Scholar 

  25. M. Das, S. Roy, Preparation, characterization and properties of newly synthesized SnO2–polycarbazole nanocomposite via room temperature solution phase synthesis process. Mater. Today: Proceed. 18, 5438–5446 (2019). https://doi.org/10.1016/j.matpr.2019.07.573

    Article  CAS  Google Scholar 

  26. V. Raj, D. Madeswari, M. Mubarak Ali, Journal of applied science, Chemical Formation, Characterization and Properties of Polycarbazole. 116, 147–154 (2010), https://doi.org/10.1002/app.31511.

  27. A. Kumar, M. Tiwari, R. Prakash, Electrochemical study of interfacially synthesized polycarbazole with different oxidants. ChemElectroChem 2, 2001–2010 (2015). https://doi.org/10.1002/celc.201500318

    Article  CAS  Google Scholar 

  28. M. Aslam, M.A. Kalyar, Z.A. Raza, Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties. Polym. Bull. https://doi.org/10.1007/s00289-020-03173-9.

  29. J. Selvi, S. Mahalakshmi, V. Parthasarathy, Vhechia Hu, Yi-Feng Lin, Kuo-Lun Tung, R. Anbarasan, A.A Annie, Optical, thermal, mechanical porperties, and non-isothermal degradation kinetic studies on PVA/CuO nanocomposites. 40, 3737–3748 (2019) https://doi.org/10.1002/pc.25235.

  30. M. Shakir, N. Iram, M.S. Khan, S.I. Al-Resayes, A.A. Khan, U. Baig, Electrical conductivity, isothermal stability, and ammonia-sensing performance of newly synthesized and characterized organic−inorganic polycarbazole−titanium dioxide nanocomposite. Ind. Eng. Chem. Res 53, 8035–8044 (2014). https://doi.org/10.1021/ie404314q

    Article  CAS  Google Scholar 

  31. P. Syed Abthagir, R. Saraswathi, Charge transport and thermal properties of polyindole, polycarbazole and their derivatives. Thermochim. Acta 424, 25–35 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sankarappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavendra, B., Sankarappa, T. & Malge, A. Structural, Optical and Electrical Conductivity Studies in Polycarbazole and its Metal Oxide Nano Composites. J Inorg Organomet Polym 32, 2416–2427 (2022). https://doi.org/10.1007/s10904-022-02358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02358-1

Keywords

Navigation