Skip to main content

CoSe2@N-Doped Graphene Nanocomposite High-Efficiency Counter Electrode for Dye-Sensitized Solar Cells

Abstract

In present study, CoSe2, and CoSe2@N-doped graphene nanocomposite has been prepared in an inert atmosphere and used as a DSSC counter electrode. The fabricated nanocomposite was characterized using analytical techniques including FTIR, TGA, XRD, Raman, XPS, and BET. The assembled DSSC obtains a photoelectric conversion efficiency (PCE) of 7.65%, which is higher than the PCE (7.19%) of the Pt electrode assembly cell under the same conditions. The promising performance of the fabricated counter electrodes may be due to the excellent surface area of the nanocomposites, the doping of heteroatoms which provide the active sites to boost the catalytic activities towards I3 reduction. These results illustrate the rational design of CoSe2@N-doped graphene nanocomposite and has great potential for replacing noble Pt for the reduction of I3 in DSSCs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. T. Ahamad et al., Enhanced photovoltaic performance of dye-sensitized solar cells based Ag2O doped BiFeO3 hetrostructures. Sol. Energy 220, 758–765 (2021)

    CAS  Article  Google Scholar 

  2. A. Aldalbahi et al., Three-dimensional architectures composed of two-dimensional atomic layer molybdenum disulphide for solar cell and self-powered photodetectors with improved performance. Energy Explor. Exploit. (2021). https://doi.org/10.1177/01445987211036828

    Article  Google Scholar 

  3. Z.-B. Wang et al., Preparation of BiFeO3 and its photoelectric performance as photoanode of DSSC. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.06.180

    Article  Google Scholar 

  4. A. Hagfeldt et al., Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    CAS  PubMed  Article  Google Scholar 

  5. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    CAS  Article  Google Scholar 

  6. Z. Jin et al., Metal selenides as efficient counter electrodes for dye-sensitized solar cells. Acc. Chem. Res. 50(4), 895–904 (2017)

    CAS  PubMed  Article  Google Scholar 

  7. Y.A. Leu et al., Thermally stable boron-doped multiwalled carbon nanotubes as a Pt-free counter electrode for dye-sensitized solar cells. ACS Sustain. Chem. Eng. 5(1), 537–546 (2017)

    CAS  Article  Google Scholar 

  8. X. Meng et al., Scrutinizing defects and defect density of selenium-doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells. Angew. Chem. Int. Ed. 57(17), 4682–4686 (2018)

    CAS  Article  Google Scholar 

  9. Q. Hou et al., Synergistic hematite-fullerene electron-extracting layers for improved efficiency and stability in perovskite solar cells. ChemElectroChem 5(5), 726–731 (2018)

    CAS  Article  Google Scholar 

  10. L. Yu, J.F. Yang, X.W.D. Lou, Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem. Int. Ed. 55(43), 13422–13426 (2016)

    CAS  Article  Google Scholar 

  11. H. Li et al., NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH. Nano Res. 15, 950–958 (2022)

    CAS  Article  Google Scholar 

  12. J. Ye et al., Oxygen vacancies enriched nickel cobalt based nanoflower cathodes: mechanism and application of the enhanced energy storage. J. Energy Chem. 62, 252–261 (2021)

    Article  Google Scholar 

  13. C. Gao, Q. Han, M. Wu, Review on transition metal compounds based counter electrode for dye-sensitized solar cells. J. Energy Chem. 27(3), 703–712 (2018)

    Article  Google Scholar 

  14. E. Singh et al., Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Adv. 7(45), 28234–28290 (2017)

    CAS  Article  Google Scholar 

  15. X. Wang et al., Hexagonal FeS nanosheets with high-energy (001) facets: counter electrode materials superior to platinum for dye-sensitized solar cells. Nano Res. 9(10), 2862–2874 (2016)

    CAS  Article  Google Scholar 

  16. S. Huang et al., Encapsulating CoS2–CoSe2 heterostructured nanocrystals in N-doped carbon nanocubes as highly efficient counter electrodes for dye-sensitized solar cells. Dalton Trans. 47(15), 5236–5244 (2018)

    CAS  PubMed  Article  Google Scholar 

  17. X. Wang et al., CoSe2/N-doped carbon hybrid derived from ZIF-67 as high-efficiency counter electrode for dye-sensitized solar cells. ACS Sustain. Chem. Eng. 7(2), 2784–2791 (2019)

    CAS  Article  Google Scholar 

  18. J. Yang et al., N-doped C/CoSe2@Co–FeSe2 yolk-shell nano polyhedron as superior counter electrode catalyst for high-efficiency Pt-free dye-sensitized solar cell. Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2019.135333

    Article  PubMed  PubMed Central  Google Scholar 

  19. X. Guo et al., One-step electrodeposited CoSe2 nano-reticular with high electroconductivity and electrocatalytic as a counter electrode for dye sensitized solar cell. J. Alloys Compd. 831, 154712 (2020)

    CAS  Article  Google Scholar 

  20. H. Sun, L. Zhang, Z.-S. Wang, Single-crystal CoSe2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells. J. Mater. Chem. A 2(38), 16023–16029 (2014)

    CAS  Article  Google Scholar 

  21. W. Wang et al., Enhanced electrocatalytic performance in dye-sensitized solar cell via coupling CoSe2@N-doped carbon and carbon nanotubes. J. Mater. Chem. C 9(22), 7046–7056 (2021)

    CAS  Article  Google Scholar 

  22. C. Tamilselvi et al., CoSe2/graphene composite: a low-cost, high performance counter electrode for dye sensitized solar cells. J. Phys.: Conf. Ser. 2070(1), 012078 (2021)

    Google Scholar 

  23. X. Wang et al., CoSe2/N-doped carbon hybrid derived from ZIF-67 as high-efficiency counter electrode for dye-sensitized solar cells. ACS Sustain. Chem. Eng. 7(2), 2784–2791 (2019)

    CAS  Article  Google Scholar 

  24. I.T. Chiu et al., Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: a study on the morphology control. Nano Energy 22, 594–606 (2016)

    CAS  Article  Google Scholar 

  25. W. Li et al., Coral-like CoSe2-nitrogen-doped porous carbon as efficient counter electrodes for quantum dot sensitized solar cells. ECS J. Solid State Sci. Technol. (2021). https://doi.org/10.1149/2162-8777/abe97d

    Article  Google Scholar 

  26. J.H. Ou et al., Metal-organic framework thin-film derived CoSe2/N co-doped carbon film as an efficient counter electrode for dye-sensitized solar cells. Chin. J. Inorg. Chem. 36(9), 1683–1689 (2020)

    CAS  Google Scholar 

  27. M. Dhonde, K. Sahu, V.V.S. Murty, Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Sol. Energy 220, 418–424 (2021)

    CAS  Article  Google Scholar 

  28. A. Gupta et al., Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell. Sol. Energy 203, 296–303 (2020)

    CAS  Article  Google Scholar 

  29. K. Sahu Dhonde, M. Dhonde, V.V.S. Murty, Novel synergistic combination of Al/N Co-doped TiO2 nanoparticles for highly efficient dye-sensitized solar cells. Sol. Energy 173, 551–557 (2018)

    CAS  Article  Google Scholar 

  30. M. Dhonde et al., Enhanced photovoltaic performance of a dye sensitized solar cell with Cu/N Co-doped TiO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 29(8), 6274–6282 (2018)

    CAS  Google Scholar 

  31. T. Ahamad et al., N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol-A. Int. J. Biol. Macromol. 132, 1031–1038 (2019)

    CAS  PubMed  Article  Google Scholar 

  32. T. Ahamad et al., N/S-doped carbon embedded with AgNPs as a highly efficient catalyst for the reduction of toxic organic pollutants. Mater. Lett. 264, 127310 (2020)

    CAS  Article  Google Scholar 

  33. T. Ahamad, S.M. Alshehri, Thermal degradation and evolved gas analysis of epoxy (DGEBA)/novolac resin blends (ENB) during pyrolysis and combustion. J. Therm. Anal. Calorim. 111(1), 445–451 (2013)

    CAS  Article  Google Scholar 

  34. M. Naushad et al., Synthesis, characterization and application of curcumin formaldehyde resin for the removal of Cd2+ from wastewater: kinetics, isotherms and thermodynamic studies. J. Ind. Eng. Chem. 29, 78–86 (2015)

    CAS  Article  Google Scholar 

  35. T. Ahamad et al., Photocatalytic degradation of bisphenol-A with g-C3N4/MoS2-PANI nanocomposite: kinetics, main active species, intermediates and pathways. J. Mol. Liq. 311, 113339 (2020)

    CAS  Article  Google Scholar 

  36. T. Ahamad et al., Synthesis and characterization cobalt phosphate embedded with N doped carbon for water splitting ORR and OER. J. King Saud Univ. Sci. 32(6), 2826–2830 (2020)

    Article  Google Scholar 

  37. N.S. Alhokbany et al., Self-nitrogen doped carbons aerogel derived from waste cigarette butts (cellulose acetate) for the adsorption of BPA: kinetics and adsorption mechanisms. J. King Saud Univ. Sci. 32(8), 3351–3358 (2020)

    Article  Google Scholar 

  38. S.M. Alshehri et al., Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr. Polym. 138, 229–236 (2016)

    CAS  PubMed  Article  Google Scholar 

  39. S.M. Alshehri et al., Nitrogen-doped cobalt ferrite/carbon nanocomposites for supercapacitor applications. ChemElectroChem 4(11), 2952–2958 (2017)

    CAS  Article  Google Scholar 

  40. M. Vinu et al., Effects of structural crystallinity and defects in microporous Al-MOF filled chitosan mixed matrix membranes for pervaporation of water/ethanol mixtures. J. Taiwan Inst. Chem. Eng. 83, 143–151 (2018)

    CAS  Article  Google Scholar 

  41. T. Ahamad, M. Naushad, S.M. Alshheri, Fabrication of highly porous N/S doped carbon embedded with CuO/CuS nanoparticles for NH3 gas sensing. Mater. Lett. 268, 127515 (2020)

    CAS  Article  Google Scholar 

  42. N. Khalaf et al., Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int. J. Biol. Macromol. 146, 763–772 (2020)

    CAS  PubMed  Article  Google Scholar 

  43. K. Liu et al., CoS2xSe2(1–x) nanowire array: an efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale 8(8), 4699–4704 (2016)

    CAS  PubMed  Article  Google Scholar 

  44. Y. Niu et al., Stepwise synthesis of CoS2-C@CoS2 yolk-shell nanocages with much enhanced electrocatalytic performances both in solar cells and hydrogen evolution reactions. J. Mater. Chem. A 6(25), 12056–12065 (2018)

    CAS  Article  Google Scholar 

  45. Q. Wang et al., One-step hydrothermal synthesis of In2.77S4 nanoparticles doped graphene oxide hybrids as efficient counter electrodes in dye-sensitized solar cells. Appl. Surf. Sci. 494, 1–7 (2019)

    CAS  Article  Google Scholar 

  46. L. Kavan, J.H. Yum, M. Grätzel, Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5(1), 165–172 (2011)

    CAS  PubMed  Article  Google Scholar 

  47. S.K. Swami et al., Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes. J. Power Sources 275, 80–89 (2015)

    CAS  Article  Google Scholar 

  48. J.D. Roy-Mayhew et al., Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10), 6203–6211 (2010)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The author thanks to Researchers Supporting Project number (RSP-2021/6), King Saud University, Riyadh, Saudi Arabia.

Funding

This study was supported by King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tansir Ahamad.

Ethics declarations

Conflict of interest

The author have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 116 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahamad, T. CoSe2@N-Doped Graphene Nanocomposite High-Efficiency Counter Electrode for Dye-Sensitized Solar Cells. J Inorg Organomet Polym (2022). https://doi.org/10.1007/s10904-022-02356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-022-02356-3

Keywords

  • Dye-sensitized solar cell
  • Counter electrode
  • CoSe2
  • N-doped graphene