Skip to main content

Improvement of Medical Applicability of Hydroxyapatite/Antimonous Oxide/Graphene Oxide Mixed Systems for Biomedical Application

Abstract

This study supports the binary and ternary merging tactic, this methodology is useful in the creation of new features that lacked in the parent constituents. Ra develops to reach its peak of 4.25 nm upon HAP/Sb2O3/GO which is shadowed by HAP/Sb2O3 with 3.87 nm. EDX technique offers quantitative, and qualitative elemental composition of the studied composite, where C, O, P, Ca, and Sb elements records 17.14, 66, 8.7, 7.57, and0.58%, respectively. Consequently, the composition is pure. Also, The BET technique’s resultant surface area is 39.49 for HAP/Sb2O3, and 50.76 m2/g for HAP/Sb2O3/GO. Additionally, The (HAP/GO, and HAP/Sb2O3/GO) ceramic composites microhardness was 3.2 ± 0.2 GPa for binary composite, and 3.5 ± 0.3 GPa for ternary composite. Thus, GO nano-materials enhance mechanical behavior. Applicably, the merging of the three components in one ternary nanocomposite presents the highest viability with 98.4 ± 0.8%, besides the highest antibacterial performance by 15.2 ± 0.4 mm for Escherichia coli and 16.1 ± 0.5 mm for Staphylococcus aureus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. S.A.S. Chatha, M. Asgher, R. Asgher, A.I. Hussain, Y. Iqbal, S.M. Hussain, H.M. Iqbal, Environmentally responsive and anti-bugs textile finishes—recent trends, challenges, and future perspectives. Sci. Total Environ. 690, 667–682 (2019)

    CAS  PubMed  Article  Google Scholar 

  2. R.S. Ambekar, B. Kandasubramanian, Advancements in nanofibers for wound dressing: a review. Eur. Polym. J. 117, 304–336 (2019)

    CAS  Article  Google Scholar 

  3. R.M. Mohammed, M.A. Habeeb, A. Hashim, Effect of antimony oxide nanoparticles on structural, optical and AC electrical properties of (PEO-PVA) blend for antibacterial applications. Int. J. 8(8) (2020)

  4. Y. Zhao, J. Xu, Z. Li, T. Fu, S. Jiang, In vitro antibacterial properties of MoO3/SiO2/Ag2O nanocomposite coating prepared by double cathode glow discharge technique. Surf. Coat. Technol. 397, 125992 (2020)

    CAS  Article  Google Scholar 

  5. A.R. Viana, A. Bottega, M.B. Serafin, B. Salles, R. Horner, A. Krause, S.R. Mortari, In vitro biological activity of liposomal-containing antimony trioxide. Res. Soc. Dev. 10(11), e391101119755–e391101119755 (2021)

    Article  Google Scholar 

  6. P. Xu, J. Cao, C. Yin, L. Wang, L. Wu, Quantum chemical study on the adsorption of megazol drug on the pristine BC3 nanosheet. Supramol. Chem. 33(3), 63–69 (2021). https://doi.org/10.1080/10610278.2021.1938049

    CAS  Article  Google Scholar 

  7. S.R. Obireddy, W. Lai, Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Deliv. 28(1), 1562–1568 (2021). https://doi.org/10.1080/10717544.2021.1955043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. X. Tang, J. Wu, W. Wu, Z. Zhang, W. Zhang, Q. Zhang, P. Li, Competitive-type pressure-dependent immunosensor for highly sensitive detection of diacetoxyscirpenol in wheat via monoclonal antibody. Anal. Chem. 92(5), 3563–3571 (2020). https://doi.org/10.1021/acs.analchem.9b03933

    CAS  Article  PubMed  Google Scholar 

  9. Z. Tan, Y. Xing, J. Cheng, G. Zhang, Z. Shen, Y. Zhang, S. Liu, EDOT-based conjugated polymers accessed C-H direct arylation for efficient photocatalytic hydrogen production. Chem. Sci. 13(6), 1725–1733 (2022). https://doi.org/10.1039/d1sc05784g

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. H. Liu, X. Li, Z. Ma, M. Sun, M. Li, Z. Zhang, S. Guo, Atomically dispersed Cu catalyst for efficient chemoselective hydrogenation reaction. Nano Lett. (2021). https://doi.org/10.1021/acs.nanolett.1c03381

    Article  PubMed  PubMed Central  Google Scholar 

  11. C. Zhao, M. Xi, J. Huo, C. He, L. Fu, Electro-reduction of N2 on nanostructured materials and the design strategies of advanced catalysts based on descriptors. Mater. Today Phys. (2022). https://doi.org/10.1016/j.mtphys.2022.100609

    Article  Google Scholar 

  12. C. Zhao, M. Xi, J. Huo, C. He, L. Fu, Computational design of BC 3N 2 based single atom catalyst for dramatic activation of inert CO2 and CH4 gases into CH3COOH with ultralow CH4 dissociation barrier. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.02.018

    Article  Google Scholar 

  13. J. Jia, Y. Cao, T. Wu, Y. Tao, Y. Pan, F. Huang, H. Tang, Highly regio- and stereoselective markovnikov hydrosilylation of alkynes catalyzed by high-nuclearity Co14 clusters. ACS Catal. 11(12), 6944–6950 (2021). https://doi.org/10.1021/acscatal.1c01996

    CAS  Article  Google Scholar 

  14. T. Li, M. Sun, S. Wu, State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials 12(5), 784 (2022). https://doi.org/10.3390/nano12050784

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. J. He, P. Xu, R. Zhou, H. Li, H. Zu, J. Zhang, F. Wang, Combustion synthesized electrospun InZnO nanowires for ultraviolet photodetectors. Adv. Electron. Mater. (2021). https://doi.org/10.1002/aelm.202100997

    Article  Google Scholar 

  16. L. Yang, Q. Dai, L. Liu, D. Shao, K. Luo, S. Jamil, X. Wang, Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram. Int. 46(8), 10917–10924 (2020). https://doi.org/10.1016/j.ceramint.2020.01.106

    CAS  Article  Google Scholar 

  17. J. Li, C. Han, X. Ou, Y. Tang, Concentrated electrolyte for high-performance CA-ion battery based on organic anode and graphite cathode. Angew. Chem. (2022). https://doi.org/10.1002/anie.202116668

    Article  Google Scholar 

  18. G. Li, H. Yuan, J. Mou, E. Dai, H. Zhang, Z. Li, X. Zhang, Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes. Compos. Commun. 29, 101043 (2022). https://doi.org/10.1016/j.coco.2021.101043

    Article  Google Scholar 

  19. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    CAS  Article  Google Scholar 

  20. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    CAS  Article  PubMed  Google Scholar 

  21. F. Ning, G. He, C. Sheng, H. He, J. Wang, R. Zhou, X. Ning, Yarn on yarn abrasion performance of high modulus polyethylene fiber improved by graphene/polyurethane composites coating. J. Eng. Fibers Fabr. (2021). https://doi.org/10.1177/1558925020983563

    Article  Google Scholar 

  22. H. Guan, S. Huang, J. Ding, F. Tian, Q. Xu, J. Zhao, Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 187, 122–134 (2020). https://doi.org/10.1016/j.actamat.2020.01.044

    CAS  Article  Google Scholar 

  23. B. Lv, S. Wang, T. Xu, F. Guo, Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior of Mg–6.0Zn–0.5Mn alloy. J. Magn. Alloys 9(3), 840–852 (2021). https://doi.org/10.1016/j.jma.2020.06.018

    CAS  Article  Google Scholar 

  24. W. Liu, Z. Guo, C. Wang, S. Niu, Physico-mechanical and microstructure properties of cemented coal Gangue-Fly ash backfill: effects of curing temperature. Constr. Build. Mater. 299, 124011 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124011

    CAS  Article  Google Scholar 

  25. Y. Zhu, H. Wang, J. Zhu, L. Chang, L. Ye, Nanoindentation and thermal study of polyvinylalcohol/graphene oxide nanocomposite film through organic/inorganic assembly. Appl. Surf. Sci. 349, 27–34 (2015)

    CAS  Article  Google Scholar 

  26. A.A. Aly, M.K. Ahmed, Fibrous scaffolds of Ag/Fe co-doped hydroxyapatite encapsulated into polycaprolactone: morphology, mechanical and in vitro cell adhesion. Int. J. Pharm. 601, 120557 (2021)

    CAS  PubMed  Article  Google Scholar 

  27. F. Munarin, P. Petrini, R. Gentilini, R.S. Pillai, S. Dirè, M.C. Tanzi, V.M. Sglavo, Micro-and nano-hydroxyapatite as active reinforcement for soft biocomposites. Int. J. Biol. Macromol. 72, 199–209 (2015)

    CAS  PubMed  Article  Google Scholar 

  28. A. Akhavan, N. Sheikh, F. Khoylou, F. Naimian, E. Ataeivarjovi, Synthesis of antimicrobial silver/hydroxyapatite nanocomposite by gamma irradiation. Radiat. Phys. Chem. 98, 46–50 (2014)

    CAS  Article  Google Scholar 

  29. S. Baradaran, E. Moghaddam, W.J. Basirun, M. Mehrali, M. Sookhakian, M. Hamdi, Y. Alias, Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69, 32–45 (2014)

    CAS  Article  Google Scholar 

  30. A.M. Fathi, M.K. Ahmed, M. Afifi, A.A. Menazea, V. Uskoković, Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold. ACS Biomater. Sci. Eng. 7(1), 360–372 (2020)

    PubMed  Article  CAS  Google Scholar 

  31. M.F.H. Abd El-Kader, M.K. Ahmed, M.T. Elabbasy, M. Afifi, A.A. Menazea, Morphological, ultrasonic mechanical and biological properties of hydroxyapatite layers deposited by pulsed laser deposition on alumina substrates. Surf. Coat. Technol. 409, 126861 (2021)

    Article  CAS  Google Scholar 

  32. M. Kaviya, P. Ramakrishnan, S.B. Mohamed, R. Ramakrishnan, J. Gimbun, K.M. Veerabadran, T.M. Sridhar, Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater. Today 36, 204–207 (2021)

    CAS  Google Scholar 

  33. M. Devaraj, R. Saravanan, R. Deivasigamani, V.K. Gupta, F. Gracia, S. Jayadevan, Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq. 221, 930–941 (2016)

    CAS  Article  Google Scholar 

  34. A. Sodagar, A. Akhavan, E. Hashemi, S. Arab, M. Pourhajibagher, K. Sodagar, A. Bahador, Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles. Prog. Orthod. 17(1), 1–7 (2016)

    Article  Google Scholar 

  35. F. Chai, J.C. Hornez, N. Blanchemain, C. Neut, M. Descamps, H.F. Hildebrand, Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng. 24(5), 510–514 (2007)

    CAS  PubMed  Article  Google Scholar 

  36. Y. Liu, J. Huang, M. Niinomi, H. Li, Inhibited grain growth in hydroxyapatite–graphene nanocomposites during high temperature treatment and their enhanced mechanical properties. Ceram. Int. 42(9), 11248–11255 (2016)

    CAS  Article  Google Scholar 

  37. S.J. Kim, H.G. Bang, J.H. Song, S.Y. Park, Effect of fluoride additive on the mechanical properties of hydroxyapatite/alumina composites. Ceram. Int. 35(4), 1647–1650 (2009)

    CAS  Article  Google Scholar 

  38. H. Karampour, M.A. Parsa, A.H. Moghadam, B. Pourhasan, R. Ashiri, Facile solution-based synthesis of impurity-free hydroxyapatite nanocrystals at ambient conditions. J. Market. Res. 16, 656–674 (2022)

    CAS  Google Scholar 

  39. F. Mohandes, M. Salavati-Niasari, In vitro comparative study of pure hydroxyapatite nanorods and novel polyethylene glycol/graphene oxide/hydroxyapatite nanocomposite. J. Nanopart. Res. 16(9), 1–12 (2014)

    CAS  Article  Google Scholar 

  40. M.G. Raucci, D. Giugliano, A. Longo, S. Zeppetelli, G. Carotenuto, L. Ambrosio, Comparative facile methods for preparing graphene oxide–hydroxyapatite for bone tissue engineering. J. Tissue Eng. Regen. Med. 11(8), 2204–2216 (2017)

    CAS  PubMed  Article  Google Scholar 

  41. T.A. Lima, M.E. Valerio, X-ray absorption fine structure spectroscopy and photoluminescence study of multifunctional europium (III)-doped hydroxyapatite in the presence of cationic surfactant medium. J. Lumin. 201, 70–76 (2018)

    CAS  Article  Google Scholar 

  42. M.T. Elsayed, A.A. Hassan, S.A. Abdelaal, M.M. Taher, M. khalaf Ahmed, K.R. Shoueir, Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. J. Market. Res. 9(6), 13927–13936 (2020)

    CAS  Google Scholar 

  43. B. Tao, C. Lin, A. Guo, Y. Yu, X. Qin, K. Li, L. Chen, Fabrication of copper ions-substituted hydroxyapatite/polydopamine nanocomposites with high antibacterial and angiogenesis effects for promoting infected wound healing. J. Ind. Eng. Chem. 104, 345–355 (2021)

    CAS  Article  Google Scholar 

  44. V. Ponnilavan, S. Vasanthavel, R.K. Singh, S. Kannan, Influence of La3+ additions on the phase behaviour and antibacterial properties of ZrO2–siO2 binary oxides. Ceram. Int. 41(6), 7632–7639 (2015)

    CAS  Article  Google Scholar 

  45. M. Alavi, N. Karimi, Ultrasound assisted-phytofabricated Fe3O4 NPs with antioxidant properties and antibacterial effects on growth, biofilm formation, and spreading ability of multidrug resistant bacteria. Artif. Cells Nanomed. Biotechnol. 47(1), 2405–2423 (2019)

    CAS  PubMed  Article  Google Scholar 

  46. A.G. Hassabo, M.E. El-Naggar, A.L. Mohamed, A.A. Hebeish, Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr. Polym. 210, 144–156 (2019)

    CAS  PubMed  Article  Google Scholar 

  47. W. Wu, X. Zhang, L. Qin, X. Li, Q. Meng, C. Shen, G. Zhang, Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation. Chem. Eng. J. 379, 122368 (2020)

    CAS  Article  Google Scholar 

  48. M. Wu, X. Qi, R. Xie, Z. Bai, S. Qin, W. Zhong, C. Deng, Graphene oxide/carbon nanotubes/CoxFe3-xO4 ternary nanocomposites: controllable synthesis and their excellent microwave absorption capabilities. J. Alloy Compd. 813, 151996 (2020)

    CAS  Article  Google Scholar 

  49. S.D. Wang, K. Wang, Q. Ma, C.X. Qu, Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Mater. Today Commun. 23, 100893 (2020)

    CAS  Article  Google Scholar 

  50. W. Qiao, W. Tian, Y. Tian, Q. Yang, Y. Wang, J. Zhang, The forecasting of PM2. 5 using a hybrid model based on wavelet transform and an improved deep learning algorithm. IEEE Access 7, 142814–142825 (2019)

    Article  Google Scholar 

  51. W. Qiao, Z. Yang, Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm. IEEE Access 7, 138972–138989 (2019)

    Article  Google Scholar 

  52. R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan, J. Shi, M. Zheng, Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem. Eng. J. 384, 123266 (2020)

    CAS  Article  Google Scholar 

  53. J. Sheng, H. Yin, F. Qian, H. Huang, S. Gao, J. Wang, Reduced graphene oxide-based composite membranes for in-situ catalytic oxidation of sulfamethoxazole operated in membrane filtration. Sep. Purif. Technol. 236, 116275 (2020)

    CAS  Article  Google Scholar 

  54. A.L. Rivera-Briso, F.L. Aachmann, V. Moreno-Manzano, Á. Serrano-Aroca, Graphene oxide nanosheets versus carbon nanofibers: Enhancement of physical and biological properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int. J. Biol. Macromol. 143, 1000–1008 (2020)

    CAS  PubMed  Article  Google Scholar 

  55. F. Hilbrig, R. Freitag, Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol. J. 7(1), 90–102 (2012)

    CAS  PubMed  Article  Google Scholar 

  56. S. Stankovich, D.A. Dikin, O.C. Compton, G.H. Dommett, R.S. Ruoff, S.T. Nguyen, Systematic post-assembly modification of graphene oxide paper with primary alkylamines. Chem. Mater. 22(14), 4153–4157 (2010)

    CAS  Article  Google Scholar 

  57. M. Li, Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng, S. Wei, Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67, 185–197 (2014)

    CAS  Article  Google Scholar 

  58. R. Askarnia, S.R. Fardi, M. Sobhani, H. Staji, Ternary hydroxyapatite/chitosan/graphene oxide composite coating on AZ91D magnesium alloy by electrophoretic deposition. Ceram. Int. 47(19), 27071–27081 (2021)

    CAS  Article  Google Scholar 

  59. S.R. Fardi, R. Askarnia, R. Pardehkhorram, E. Adabifiroozjaei, Improvement of biomedical functionality of titanium by ultrasound-assisted electrophoretic deposition of hydroxyapatite-graphene oxide nanocomposites. Ceram. Int. 46(11), 18297–18307 (2020)

    CAS  Article  Google Scholar 

  60. D. Lahiri, A.P. Benaduce, L. Kos, A. Agarwal, Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique. Nanotechnology 22(35), 355703 (2011)

    PubMed  Article  CAS  Google Scholar 

  61. V.M. Wu, M.K. Ahmed, M.S. Mostafa, V. Uskoković, Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts. Mater. Sci. Eng., C 117, 111257 (2020)

    CAS  Article  Google Scholar 

  62. R. Zou, T. Xu, X. Lei, Q. Wu, S. Xue, Novel design of porous hollow hydroxyapatite microspheres decorated by reduced graphene oxides with superior photocatalytic performance for tetracycline removal. Solid State Sci. 99, 106067 (2020)

    CAS  Article  Google Scholar 

  63. Y.Y. Xie, X.H. Hu, Y.W. Zhang, F. Wahid, L.Q. Chu, S.R. Jia, C. Zhong, Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr. Polym. 229, 115456 (2020)

    CAS  PubMed  Article  Google Scholar 

  64. S.F. Mansour, A.M. Eid, L. Abd El-Latif, M.M. Rashad, S. Ducharme, M. Afifi, J.A. Turner, Structure, ferroelectric and mechanical performance of polycrystalline gadolinium-doped lead lanthanum zirconate titanate ceramics. in 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM), (2017), pp. 63–67. IEEE.‏

  65. S.F. Mansour, S.I. El-dek, M. Ismail, M.K. Ahmed, Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomed. Phys. Eng. Express 4(4), 045008 (2018)

    Article  Google Scholar 

  66. M.F. Abdelbar, H.S. El-Sheshtawy, K.R. Shoueir, I. El-Mehasseb, E.Z.M. Ebeid, M. El-Kemary, Halogen bond triggered aggregation induced emission in an iodinated cyanine dye for ultra sensitive detection of Ag nanoparticles in tap water and agricultural wastewater. RSC Adv. 8(43), 24617–24626 (2018)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. M.A. Zakaria, A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surf. Interfaces 19, 100438 (2020)

    CAS  Article  Google Scholar 

  68. X. Yang, R. Zou, F. Huo, D. Cai, D. Xiao, Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol. J. Hazard. Mater. 164(1), 367–373 (2009)

    CAS  PubMed  Article  Google Scholar 

  69. M.K. Ahmed, R. Al-Wafi, S.F. Mansour, S.I. El-Dek, V. Uskoković, Physical and biological changes associated with the doping of carbonated hydroxyapatite/polycaprolactone core-shell nanofibers dually, with rubidium and selenite. J. Market. Res. 9(3), 3710–3723 (2020)

    CAS  Google Scholar 

  70. A. Amari, M.K. Al Mesfer, N.S. Alsaiari, M. Danish, A.M. Alshahrani, M.A. Tahoon, F.B. Rebah, Electrochemical and optical properties of Tellurium Dioxide (TeO2) nanoparticles. Int. J. Electrochem. Sci 16, 210235 (2021)

    CAS  Article  Google Scholar 

  71. A.M. Mostafa, A.A. Menazea, Polyvinyl Alcohol/Silver nanoparticles film prepared via pulsed laser ablation: an eco-friendly nano-catalyst for 4-nitrophenol degradation. J. Mol. Struct. 1212, 128125 (2020)

    CAS  Article  Google Scholar 

  72. A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Opt. Mater. 100, 109663 (2020)

    CAS  Article  Google Scholar 

  73. A. Janković, S. Eraković, M. Mitrić, I.Z. Matić, Z.D. Juranić, G.C. Tsui, S.J. Park, Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J. Alloy Compd. 624, 148–157 (2015)

    Article  CAS  Google Scholar 

  74. O. Kaygili, C. Tatar, F. Yakuphanoglu, S. Keser, Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. J. Sol-Gel. Sci. Technol. 65(2), 105–111 (2013)

    CAS  Article  Google Scholar 

  75. C.L. Tseng, K.C. Chang, M.C. Yeh, K.C. Yang, T.P. Tang, F.H. Lin, Development of a dual-functional Pt–Fe-HAP magnetic nanoparticles application for chemo-hyperthermia treatment of cancer. Ceram. Int. 40(4), 5117–5127 (2014)

    CAS  Article  Google Scholar 

  76. K. Krishnamoorthy, N. Umasuthan, R. Mohan, J. Lee, S.J. Kim, Antibacterial activity of graphene oxide nanosheets. Sci. Adv. Mater. 4(11), 1111–1117 (2012)

    CAS  Article  Google Scholar 

  77. L. Wei, D. Pang, L. He, C. Deng, Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 43(18), 16141–16148 (2017)

    CAS  Article  Google Scholar 

  78. K. Zawisza, P. Sobierajska, N. Nowak, A. Kedziora, K. Korzekwa, B. Pozniak, R.J. Wiglusz, Preparation and preliminary evaluation of bio-nanocomposites based on hydroxyapatites with antibacterial properties against anaerobic bacteria. Mater. Sci. Eng. C 106, 110295 (2020)

    CAS  Article  Google Scholar 

  79. B. Moreno-Perez, Z. Matamoros-Veloza, J.C. Rendon-Angeles, K. Yanagisawa, A. Onda, J.E. Pérez-Terrazas, M. Rodríguez-Reyes, Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín de la Sociedad Española de Cerámica y Vidrio 59(2), 50–64 (2020)

    CAS  Article  Google Scholar 

  80. K. Shoueir, M.K. Ahmed, S.A.A. Gaber, M. El-Kemary, Thallium and selenite doped carbonated hydroxyapatite: microstructural features and anticancer activity assessment against human lung carcinoma. Ceram. Int. 46(4), 5201–5212 (2020)

    CAS  Article  Google Scholar 

  81. M.K. Ahmed, S.F. Mansour, M.S. Mostafa, R. Darwesh, S.I. El-Dek, Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J. Mater. Sci. 54(3), 1977–1991 (2019)

    CAS  Article  Google Scholar 

  82. M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskoković, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous ε-polycaprolactone scaffolds for tissue engineering. Int. J. Pharm. 577, 118950 (2020)

    CAS  PubMed  Article  Google Scholar 

  83. A.K. Gain, L. Zhang, W. Liu, Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders. Mater. Des. 67, 136–144 (2015)

    CAS  Article  Google Scholar 

  84. J.A. Luceño-Sánchez, G. Maties, C. Gonzalez-Arellano, A.M. Diez-Pascual, Synthesis and characterization of graphene oxide derivatives via functionalization reaction with hexamethylene diisocyanate. Nanomaterials 8(11), 870 (2018)

    PubMed Central  Article  CAS  Google Scholar 

  85. S.L. Iconaru, M. Motelica-Heino, D. Predoi, Study on europium-doped hydroxyapatite nanoparticles by fourier transform infrared spectroscopy and their antimicrobial properties. J. Spectrosc. (2013)

  86. A.A. Menazea, S.A. Abdelbadie, M.K. Ahmed, Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 508, 145299 (2020)

    CAS  Article  Google Scholar 

  87. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7(7), 2769–2781 (2011)

    CAS  PubMed  Article  Google Scholar 

  88. K. Kaviyarasu, K. Kanimozhi, N. Matinise, C.M. Magdalane, G.T. Mola, J. Kennedy, M. Maaza, Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater. Sci. Eng. C 76, 1012–1025 (2017)

    CAS  Article  Google Scholar 

  89. M. Wang, Y. Liu, G. Ren, W. Wang, S. Wu, J. Shen, Bioinspired carbon quantum dots for sensitive fluorescent detection of vitamin B12 in cell system. Anal. Chim. Acta 1032, 154–162 (2018)

    CAS  PubMed  Article  Google Scholar 

  90. L.A. Zavala-Sanchez, G.A. Hirata, E. Novitskaya, K. Karandikar, M. Herrera, O.A. Graeve, Distribution of Eu2+ and Eu3+ ions in hydroxyapatite: a cathodoluminescence and Raman study. ACS Biomater. Sci. Eng. 1(12), 1306–1313 (2015)

    CAS  PubMed  Article  Google Scholar 

  91. K. Castkova, H. Hadraba, A. Matousek, P. Roupcova, Z. Chlup, L. Novotna, J. Cihlar, Synthesis of Ca, Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 36(12), 2903–2912 (2016)

    CAS  Article  Google Scholar 

  92. S.F. Mansour, S.I. El-dek, M.K. Ahmed, Tailoring the structure of biphasic calcium phosphate via synthesis procedure. Mater. Res. Express 4(12), 125015 (2017)

    Article  CAS  Google Scholar 

  93. S.F. Mansour, S.I. El-Dek, M.K. Ahmed, Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7(1), 1–21 (2017)

    Article  Google Scholar 

  94. B. Müller, Tailoring biocompatibility: benefitting patients. Mater. Today 13(4), 58 (2010)

    Article  Google Scholar 

  95. S. Ashraf, M.K. Ahmed, H.A. Ibrahium, N.S. Awwad, E. Abdel-Fattah, M.G. Ghoniem, Nanofibers of polycaprolactone containing hydroxyapatite doped with aluminum/vanadate ions for wound healing applications. New J. Chem. 45(48), 22610–22620 (2021)

    CAS  Article  Google Scholar 

  96. S. Ghotekar, S. Pansambal, M. Bilal, S.S. Pingale, R. Oza, Environmentally friendly synthesis of Cr2O3 nanoparticles: characterization, applications and future perspective─ a review. Case Stud. Chem. Environ. Eng. 3, 100089 (2021)

    Article  CAS  Google Scholar 

  97. M.H. Khorasanizadeh, R. Monsef, O. Amiri, M. Amiri, M. Salavati-Niasari, Sonochemical-assisted route for synthesis of spherical shaped holmium vanadate nanocatalyst for polluted waste water treatment. Ultrason. Sonochem. 58, 104686 (2019)

    CAS  PubMed  Article  Google Scholar 

  98. K. Kaviyarasu, A. Mariappan, K. Neyvasagam, A. Ayeshamariam, P. Pandi, R.R. Palanichamy, M. Maaza, Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method. Surf. Interfaces 6, 247–255 (2017)

    CAS  Article  Google Scholar 

  99. S. Lamkhao, M. Phaya, C. Jansakun, N. Chandet, K. Thongkorn, G. Rujijanagul, C. Randorn, Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci. Rep. 9(1), 1–9 (2019)

    CAS  Article  Google Scholar 

  100. E. Skwarek, W. Janusz, D. Sternik, The influence of the hydroxyapatite synthesis method on the electrochemical, surface and adsorption properties of hydroxyapatite. Adsorpt. Sci. Technol. 35(5–6), 507–518 (2017)

    CAS  Article  Google Scholar 

  101. Z. Song, Y. Liu, J. Shi, T. Ma, Z. Zhang, H. Ma, S. Cao, Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng. C 83, 90–98 (2018)

    CAS  Article  Google Scholar 

  102. Z.A. Al-Ahmed, N.S. Al-Radadi, M.K. Ahmed, K. Shoueir, M. El-Kemary, Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. Arab. J. Chem. 13(12), 8626–8637 (2020)

    CAS  Article  Google Scholar 

  103. K. Wang, Y. Wu, H. Li, M. Li, F. Guan, H. Fan, A hybrid antioxidizing and antibacterial material based on Ag–La2O3 nanocomposites. J. Inorg. Biochem. 141, 36–42 (2014)

    CAS  PubMed  Article  Google Scholar 

  104. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15(1), 1–20 (2017)

    Article  CAS  Google Scholar 

  105. N. Méndez-Lozano, R. Velázquez-Castillo, E.M. Rivera-Muñoz, L. Bucio-Galindo, G. Mondragón-Galicia, A. Manzano-Ramírez, L.M. Apátiga-Castro, Crystal growth and structural analysis of hydroxyapatite nanofibers synthesized by the hydrothermal microwave-assisted method. Ceram. Int. 43(1), 451–457 (2017)

    Article  CAS  Google Scholar 

  106. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cui, Biocompatibility of graphene oxide. Nanoscale Res Lett 6(1), 1–8 (2011)

    Google Scholar 

  107. W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(1), 94–117 (1998)

    CAS  Article  Google Scholar 

  108. N.A. Saad, M.N. Obaid, Enhanced the antibacterial and mechanical properties of UHMWPE by Addition Sort Fibers of Polyacrylonitraile (PAN), Graphene Nanoplate (GNP) and Hydroxyapatite (HAp). Indian J. Forensic Med. Toxicol. 14(2), 1370–1376 (2020)

    Google Scholar 

  109. J. Castañeda-Vía, C.V. Landauro, J. Quispe-Marcatoma, A. Champi, F. Montalvo, L. Delgado, V. Peña-Rodríguez, Improvement of mechanical properties of hydroxyapatite composites reinforced with i-Al64Cu23Fe13 quasicrystal. J. Compos. Mater. 55(9), 1209–1216 (2021)

    Article  CAS  Google Scholar 

  110. A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, F.H. Abd El-kader, Nd: YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies. SILICON 12(1), 13–20 (2020)

    CAS  Article  Google Scholar 

  111. A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, A. El-kader, Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd: YAG nanosecond laser pulses: characterization and dielectric studies. J. Electron. Mater. 49(1), 826–832 (2020)

    CAS  Article  Google Scholar 

  112. A.A. Menazea, Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiat. Phys. Chem. 168, 108616 (2020)

    CAS  Article  Google Scholar 

  113. A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol-Gel method. J. Mol. Struct. 1196, 332–337 (2019)

    CAS  Article  Google Scholar 

  114. P. Zufferey, R. Valcov, M. Thomas, A. Dumusc, M. Forien, A. So, S. Ottaviani, Efficacy of anakinra in acute hydroxyapatite calcification-induced joint pain: a retrospective study of 23 cases. Joint Bone Spine 86(1), 83–88 (2019)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through research groups Program under Grant of Number R.G.P.2/124/43.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Menazea.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menazea, A.A., Mostafa, M.S., Awwad, N.S. et al. Improvement of Medical Applicability of Hydroxyapatite/Antimonous Oxide/Graphene Oxide Mixed Systems for Biomedical Application. J Inorg Organomet Polym (2022). https://doi.org/10.1007/s10904-022-02355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-022-02355-4

Keywords

  • Hydroxyapatite
  • Sb2O3
  • Graphene oxide
  • Antibacterial
  • Cell viability