Skip to main content
Log in

A Treatment of Wastewater Containing Safranin O Using Immobilized Myriophyllum spicatum L. onto Polyacrylonitrile/Polyvinylpyrrodlidone Biosorbent

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The phase inversion technique was used to successfully immobilize a submerged aquatic plant called Myriophyllum spicatum L. onto hybrid polymeric beads of Polyacrylonitrile/Polyvinylpyrrolidone (PAN/PVP). The surface morphology of the fabricated beads exhibited a porous structure with a homogeneous morphology. While their thermogram demonstrated a positive impact of PVP incorporation. In this study, the fabricated hybrid beads were tested against Safranin O as a dye adsorption model. Thus, the various parameters affecting Safranin O dye uptake onto the synthesized beads, such as time of contact, initial Safranin O concentration, adsorbent dose, and pH have been investigated and optimized using statistical response surface methodology (RSM). The results revealed that within 4 h, the fabricated PAN/PVP-M. spicatum beads showed a maximum adsorption capacity towards Safranin O dye of up to 217 mg g−1 using 0.3 g of the fabricated beads. The adsorption isotherm results were also fit to the Langmuir, Freundlich, and Temkin models, with the Langmuir model performing the best. The kinetic studies, on the other hand, obeyed the pseudo-second-order, and the fabricated PAN/PVP-M. spicatum beads showed appropriate reusability in the uptake of Safranin O dye from wastewater. Finally, the newly developed fabricated (PAN/PVP-M. spicatum) hybrid beads pave the way for the use of low-cost, efficient natural materials for wastewater treatment in the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.R. El-Aassar, H. Fakhry, A.A. Elzain et al., Rhizofiltration system consists of chitosan and natural Arundo donax L. for removal of basic red dye. Int. J. Biol. Macromol. 120, 1508–1514 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.159

    Article  PubMed  CAS  Google Scholar 

  2. D. Bilba, D. Suteu, T. Malutan, Removal of reactive dye brilliant red HE-3B from aqueous solutions by hydrolyzed polyacrylonitrile fibres: equilibrium and kinetics modelling. Cent. Eur. J. Chem. 6, 258–266 (2008)

    CAS  Google Scholar 

  3. C.L. Mack, B. Wilhelmi, J.R. Duncan, J.E. Burgess, A kinetic study of the recovery of platinum ions from an artificial aqueous solution by immobilized Saccharomyces cerevisiae biomass. Miner. Eng. 21, 31–37 (2008). https://doi.org/10.1016/j.mineng.2007.07.001

    Article  CAS  Google Scholar 

  4. T.H. Kim, C. Park, S. Kim, Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. J. Clean. Prod. 13, 779–786 (2005)

    Article  Google Scholar 

  5. B. Shi, G. Li, D. Wang, C. Feng, Removal of direct dyes by coagulation: the performance of performed polymeric aluminum species. J. Hazard. Mater. 143, 567–574 (2007)

    Article  CAS  Google Scholar 

  6. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697 (2018). https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  7. L. Xu, H. Wang, Z. Chu, L. Cai, H. Shi, C. Zhu, Y. Lei, Temperature-responsive multilayer films of micelle-based composites for controlled release of a third-generation EGFR inhibitor. ACS Appl. Polym. Mater. 2(2), 741–750 (2020)

    Article  CAS  Google Scholar 

  8. L. Xu, Z. Chu, H. Wang, L. Cai, Z. Tu, H. Liu, X. Fei, Electrostatically assembled multilayered films of biopolymer enhanced nanocapsules for on-demand drug release. ACS Appl. Bio Mater. 2(8), 3429–3438 (2019)

    Article  CAS  Google Scholar 

  9. L. Xu, X. Zhang, Z. Chu, H. Wang, Y. Li, X. Shen, Temperature-responsive multilayer films based on block copolymer-coated silica nanoparticles for long-term release of favipiravir. ACS Appl. Nano Mater. 4(12), 14014–14025 (2021)

    Article  CAS  Google Scholar 

  10. N.B. Shukla, S. Rattan, G. Madras, Swelling and dye-adsorption characteristics of an amphoteric swelling and dye-adsorption characteristics of an amphoteric superabsorbent polymer. Ind. Eng. Chem. Res. (2012). https://doi.org/10.1021/ie301839z

    Article  Google Scholar 

  11. S. Haider, F.F. Binagag, A. Haider, Electrospun oxime-grafted-polyacrylonitrile nanofiber membrane and its application to the adsorption of dyes. Ind. Eng. Chem. Res. 51(46), 14941–14948 (2014)

    Google Scholar 

  12. S. Ahmed, M.S. Mohd, A.N. Ahmedy, J.K. Khairil, Removal of methylene blue dye from aqueous solution using alginate grafted polyacrylonitrile beads. Der Pharma Chem. 7(2), 237–242 (2015)

    Google Scholar 

  13. N. Giri, R.K. Natarajan, S. Gunasekaran, S. Shreemathi, C NMR and FTIR spectroscopic study of blend behavior of PVP and nano silver particles. Arch Appl Sci Res 3, 624–630 (2011)

    CAS  Google Scholar 

  14. M. Basibuyuk, S. Savci, O. Keskinkan, M.E. Cakmak, Investigation of a basic dye adsorption characteristics of a non-living submerged aquatic plant (Myriophyllum spicatum). Asian J. Chem. 19, 1693–1702 (2007)

    CAS  Google Scholar 

  15. D.E.A. Mammar, Decolorization of the aqueous Safranin O dye solution using Thuja orientalis as biosorbent. Iraq. J. Sci. 55, 886–898 (2014)

    Google Scholar 

  16. M.R. El-Aassar, Functionalized electrospun nanofibers from poly (AN-co-MMA) for enzyme immobilization. J. Mol. Catal. B 85, 141–148 (2013)

    Google Scholar 

  17. M. Wawrzkiewicz, E. Polska-Adach, Z. Hubicki, Polacrylic and polystyrene functionalized resins for direct dye removal from textile effluents. Sep. Sci. Technol. 55, 2122–2136 (2020). https://doi.org/10.1080/01496395.2019.1583254

    Article  CAS  Google Scholar 

  18. D. Sun, X. Zhang, Y. Wu, X. Liu, Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater. 181, 335–342 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.015

    Article  PubMed  CAS  Google Scholar 

  19. Z. Han, J. Jin, Y. Wang et al., Encapsulating TiO2 into polyvinyl alcohol coated polyacrylonitrile composite beads for the effective removal of methylene blue. J. Braz. Chem. Soc. 30, 211–223 (2019). https://doi.org/10.21577/0103-5053.20180170

    Article  CAS  Google Scholar 

  20. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44, 17883–17905 (2015). https://doi.org/10.1039/c5dt02964c

    Article  PubMed  CAS  Google Scholar 

  21. A.S. Abdulhameed, A.H. Jawad, A.T. Mohammad, Synthesis of chitosanethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresour. Technol. 293, 122071 (2019). https://doi.org/10.1016/j.biortech.2019.122071

    Article  PubMed  CAS  Google Scholar 

  22. J. Duraipandian, T. Rengasamy, S. Vadivelu, Experimental and modeling studies for the removal of crystal violet dye from aqueous solutions using eco-friendly Gracilaria corticata seaweed activated carbon/Zn/alginate polymeric composite beads. J. Polym. Environ. 25, 1062–1071 (2017). https://doi.org/10.1007/s10924-016-0879-z

    Article  CAS  Google Scholar 

  23. T. Kekes, C. Tzia, Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: equilibrium, kinetics and mechanism studies. J. Environ. Manag. (2020). https://doi.org/10.1016/j.jenvman.2020.110372

    Article  Google Scholar 

  24. J. Nath, L. Ray, D. Bera, Continuous removal of malachite green by calcium alginate immobilized Bacillus cereus M116 in packed bed column. Environ. Technol. Innov. 6, 132–140 (2016). https://doi.org/10.1016/j.eti.2016.06.002

    Article  Google Scholar 

  25. D. Bendaho, T.A. Driss, Removal of cationic dye methylene blue from aqueous solution by adsorption on algerian clay. Int. J. Waste Resour. 5, 1–6 (2015). https://doi.org/10.4303/2252-5211.1000175

    Article  Google Scholar 

  26. M.F. El-Kady, M.R. El-Aassar, O.A. El Batrawy et al., Equilibrium and kinetic behaviors of cationic dye decolorization using poly (AN-co-Py)/ZrO2 novel nanopolymeric composites. Adv. Polym. Technol. 37, 740–752 (2018). https://doi.org/10.1002/adv.21716

    Article  CAS  Google Scholar 

  27. A. Yildirim, Y. Bulut, Adsorption behaviors of malachite green by using crosslinked chitosan/polyacrylic acid/bentonite composites with different ratios. Environ. Technol. Innov. 17, 100560 (2020). https://doi.org/10.1016/j.eti.2019.100560

    Article  Google Scholar 

  28. Z.A. Sutirman, M.M. Sanagi, K.J. Abd Karim et al., Enhanced removal of Orange G from aqueous solutions by modified chitosan beads: Performance and mechanism. Int. J. Biol. Macromol. 133, 1260–1267 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.188

    Article  PubMed  CAS  Google Scholar 

  29. Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollution 141(1), 1–33 (2002)

    Article  CAS  Google Scholar 

  30. M.S. Mohy-Eldin, M.F. Elkady, M.A. Abu-Saied, A.M. Abdel Rahman, E.A. Soliman, A.A. Elzatahry, M.E. Youssef, Removal of cadmium ions from synthetic aqueoussolutions with a novel nanosulfonated poly(glycidylmethacrylate) cation exchanger: kinetic and equilibrium studies. J. Appl. Polym. Sci. 118, 111–3122 (2010)

    Article  CAS  Google Scholar 

  31. Bayramoglu G, Arica MY (2013) Removal of reactive dyes from wastewater by acrylate polymer beads bearing amino groups : isotherm and kinetic studies Coloration Technology. 114–124. https://doi.org/10.1111/cote.12012

  32. Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes. 34, 451–465 (1999)

    CAS  Google Scholar 

  33. Y. Ho, Review of second-order models for adsorption systems. 136, 681–689 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.043

    Article  CAS  Google Scholar 

  34. C. Cao, L. Xiao, C. Chen et al., In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction—precipitation method and their application in adsorption of reactive azo dye. Powder Technol 260, 90–97 (2014). https://doi.org/10.1016/j.powtec.2014.03.025

    Article  CAS  Google Scholar 

  35. J. Azimvand, K. Didehban, S.A. Mirshokraie, Safranin-O removal from aqueous solutions using lignin nanoparticle-g-polyacrylic acid adsorbent: synthesis, properties, and application. Adsorpt Sci Technol 36, 1422–1440 (2018). https://doi.org/10.1177/0263617418777836

    Article  CAS  Google Scholar 

  36. G.A. Kayode, M. Amoakoh-Coleman, I. Akua Agyepong et al., Contextual risk factors for low birth weight: a multilevel analysis. PLoS ONE 9, 1–8 (2014). https://doi.org/10.1371/journal.pone.0109333

    Article  CAS  Google Scholar 

  37. M.R. Malekbala, S.M. Soltani, S.K. Yazdi, S. Hosseini, Equilibrium and kinetic studies of safranine adsorptionon alkali-treated mango seed integuments. Int J Chem Eng Appl 3, 160–166 (2012). https://doi.org/10.7763/ijcea.2012.v3.179

    Article  CAS  Google Scholar 

  38. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265, 159–168 (2011). https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  39. I.S. Samaka, Removal of basic Red 2 from industrial effluents using natural Iraqi material. Civil Environ Res 6(7), 138–148 (2014)

    Google Scholar 

  40. J. Kennedy, M. Maaza, AC SC. J Phys Chem Solids (2018). https://doi.org/10.1016/j.jpcs.2018.07.009

    Article  Google Scholar 

  41. G. McKay, J.F. Porter, G.R. Prasad, The removal of dye colours from aqueous solutions by adsorption on low- cost materials. Water Air Soil Pollut 114, 423–438 (1999). https://doi.org/10.1023/A:1005197308228

    Article  CAS  Google Scholar 

  42. R.G. Harris, J.D. Wells, B.B. Johnson, Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids Surf A 180, 131–140 (2001). https://doi.org/10.1016/S0927-7757(00)00747-0

    Article  CAS  Google Scholar 

  43. M.R. Abukhadra, M.A. El-Meligy, A.M. El-Sherbeeny, Evaluation and characterization of Egyptian ferruginous kaolinite as adsorbent and heterogeneous catalyst for effective removal of safranin-O cationic dye from water. Arab J Geosci (2020). https://doi.org/10.1007/s12517-020-5182-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-03-0354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan M. A. Hassan, M. R. El-Aassar or Ibrahim Hotan Alsohaimi.

Ethics declarations

Conflict of interest

All authors declare that, there is no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhry, H., Hassan, H.M.A., El-Aassar, M.R. et al. A Treatment of Wastewater Containing Safranin O Using Immobilized Myriophyllum spicatum L. onto Polyacrylonitrile/Polyvinylpyrrodlidone Biosorbent. J Inorg Organomet Polym 32, 3181–3195 (2022). https://doi.org/10.1007/s10904-022-02354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02354-5

Keywords

Navigation