Skip to main content
Log in

Design, Synthesis, and Fabrication of Chitosan/Hydroxyapatite Composite Scaffold for Use as Bone Replacement Tissue by Sol–Gel Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Injuries or bone defects are phenomena that are harmful to human health. In the field of bone scaffold tissue engineering, hydroxyapatite nanoparticles have been considered due to their high similarity to inorganic bone composition, but despite the similarity of chemical composition, the mechanical properties of synthetic hydroxyapatite (HA) are weak compared to bone. In this study, hydroxyapatite nanoparticles were synthesized by the sol–gel method. Then eight samples of composite scaffolds with chitosan (Chi) as biopolymer and different percentages of hydroxyapatite (0, 25, 50, and 75%) were prepared using a crosslinker of glutaraldehyde (GA) and sodium tripolyphosphate (TPP). To characterize the synthesized hydroxyapatite powder and scaffold samples, FTIR, FE-SEM, XRD, DTA-TG characterization tests, bioactivity analysis, and also strength test were performed. The results of the FESEM analysis show that hydroxyapatite particles with an average size of 48 nm have been synthesized by the sol–gel method. Also, FE-SEM images of scaffold samples show that as the amount of hydroxyapatite increases, the size of the pores decreases, and their distribution is uniform. FTIR spectroscopic analysis shows that both types of crosslinkers behave almost similarly and that the hydroxyapatite particles have established hydrogen bonds with the chitosan. Samples containing 75 wt.% of hydroxyapatite have the highest compressive strength and samples containing 50 wt.% of hydroxyapatite have the best behavior in terms of elongation. Scaffold samples were placed in simulated body fluid (SBF) for biological analysis for 1 week. FESEM images after removal of scaffolds from SBF solution show that the amount of calcium and phosphate ions adsorbed on scaffold samples containing 75 wt.% of hydroxyapatite is higher than other samples. One of the most important results of glutaraldehyde cross-linking with hydroxyapatite is that it controls the mechanical properties and adsorption rate without reducing the high biocompatibility of the composite. Also in this study, CHi-HA50%-TPP scaffolds exhibited the most promising physiochemical and biocompatible properties which can be used as an alternative regenerative material for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data required to reproduce these findings have been given in the text.

References

  1. A. Farazin, F. Aghadavoudi, M. Motififard, S. Saber-Samandari, A. Khandan, J. Appl. Comput. Mech. 7, 1907 (2021)

    Google Scholar 

  2. A. Farazin, H.A. Aghdam, M. Motififard, F. Aghadavoudi, A. Kordjamshidi, S. Saber-Samandari, S. Esmaeili, A. Khandan, J Nanoanalysis 6, 172–3 (2019)

    Google Scholar 

  3. Z.S. Kazeroni, M. Telloo, A. Farazin, S. Saber-Samandari, E. Sheikhbahaei, B. Kamyab-Moghadas, H. JoneidiYekta, S. Esmaeili, A. Khandan, AUT J. Mech. Eng. 5, 109 (2021)

    Google Scholar 

  4. A. Farazin, M. Mohammadimehr, Int. J. Adv. Manuf. Technol. 118, 103 (2022)

    Article  Google Scholar 

  5. A. Farazin, A. Khan, J. Strain Anal. Eng. Des. (2021). https://doi.org/10.1177/03093247211043714

    Article  Google Scholar 

  6. A. Farazin, Z. Torkpour, S. Dehghani, R. Mohammadi, M.D. Fahmy, S. Saber-Samandari, K.A. Labib, A. Khandan, Int. J. Basic Sci. Med. 6, 44 (2021)

    Article  Google Scholar 

  7. D. Green, D. Walsh, S. Mann, R.O.C. Oreffo, Bone 30, 810 (2002)

    Article  CAS  Google Scholar 

  8. A.B. Yeatts, J.P. Fisher, Bone 48, 171 (2011)

    Article  CAS  Google Scholar 

  9. M. Giner, E. Chicardi, A.F. Costa, L. Santana, M.Á. Vázquez-Gámez, C. García-Garrido, M.A. Colmenero, F.J. Olmo-Montes, Y. Torres, M.J. Montoya-García, Metals (Basel). 11, 130 (2021)

    Article  CAS  Google Scholar 

  10. J.J. Andrew, V. Arumugam, C. Santulli, Compos. Struct. 143, 63 (2016)

    Article  Google Scholar 

  11. S. Gowid, E. Mahdi, S.S. Youssef, E. Moustafa, A. Mosleh, A. Shokry, Compos. Struct. 276, 114569 (2021)

    Article  CAS  Google Scholar 

  12. C. Kang, Z. Liu, B. Shirinzadeh, H. Zhou, Y. Shi, T. Yu, P. Zhao, Compos. Struct. 267, 113861 (2021)

    Article  Google Scholar 

  13. Q. Wu, Q. Wang, S. Ren, L. Zu, Q. Zhang, G. Zhang, Compos. Struct. 259, 113455 (2021)

    Article  CAS  Google Scholar 

  14. L. Zu, H. Xu, B. Zhang, D. Li, B. Zi, Compos. Struct. 194, 119 (2018)

    Article  Google Scholar 

  15. K. Moreno, J. García-Miranda, C. Hernández-Navarro, F. Ruiz-Guillén, L. Aguilera-Camacho, R. Lesso, A. Arizmendi-Morquecho, J. Compos. Mater. 49, 1345 (2015)

    Article  CAS  Google Scholar 

  16. M.P. Bernardo, B.C.R. da Silva, L.H.C. Mattoso, J. Compos. Mater. 55, 2289 (2021)

    Article  CAS  Google Scholar 

  17. A.M. Deliormanlı, J. Compos. Mater. 50, 917 (2016)

    Article  CAS  Google Scholar 

  18. A. Asuvaran and G. Elatharasan, Silicon (2021).

  19. K. Vishal, K. Rajkumar, P. Sabarinathan, and V. Dhinakaran, Silicon (2022).

  20. G. Anand and S. Vishvanathperumal, Silicon (2022).

  21. P. Vimala, L. L. Krishna, and S. S. Sharma, Silicon (2022).

  22. R. Srinivasan, M. Kamaraj, D. Rajeev, S. Ravi, and N. Senthilkumar, Silicon (2022).

  23. H. Idrees, S.Z.J. Zaidi, A. Sabir, R.U. Khan, X. Zhang, S. Hassan, Nanomaterials 10, 1970 (2020)

    Article  CAS  Google Scholar 

  24. B.I. Oladapo, S.A. Zahedi, S.O. Ismail, D.B. Olawade, Renew. Sustain. Energy Rev. 150, 111505 (2021)

    Article  CAS  Google Scholar 

  25. Q. Yang, J. Peng, H. Xiao, X. Xu, Z. Qian, Carbohydr. Polym. 278, 118952 (2022)

    Article  CAS  Google Scholar 

  26. N. Castro, S. Ribeiro, M.M. Fernandes, C. Ribeiro, V. Cardoso, V. Correia, R. Minguez, S. Lanceros-Mendez, Adv. Biosyst. 4, 2000125 (2020)

    Article  Google Scholar 

  27. D.T. Fox, D.E. Soltis, P.S. Soltis, T.-L. Ashman, Y. Van de Peer, Trends Cell Biol. 30, 688 (2020)

    Article  CAS  Google Scholar 

  28. N. Mehrban, C.P. Molina, L.M. Quijano, J. Bowen, S.A. Johnson, J. Bartolacci, J.T. Chang, D.A. Scott, D.N. Woolfson, M.A. Birchall, S.F. Badylak, Acta Biomater. 111, 141 (2020)

    Article  CAS  Google Scholar 

  29. Z. Wang, Y. Wang, J. Yan, K. Zhang, F. Lin, L. Xiang, L. Deng, Z. Guan, W. Cui, H. Zhang, Adv. Drug Deliv. Rev. 174, 504 (2021)

    Article  CAS  Google Scholar 

  30. A.Z. Kharazi, M. Fathi, F. Bahmani, H. Fanian, J. Compos. Mater. 46, 2753 (2012)

    Article  CAS  Google Scholar 

  31. M.L. Chinta, A. Velidandi, N.P.P. Pabbathi, S. Dahariya, S.R. Parcha, Int. J. Biol. Macromol. 175, 495 (2021)

    Article  CAS  Google Scholar 

  32. P. Feng, J. Jia, M. Liu, S. Peng, Z. Zhao, C. Shuai, Mater. Des. 210, 110066 (2021)

    Article  CAS  Google Scholar 

  33. X. Wang, Y. Li, J. Wei, K. de Groot, Biomaterials 23, 4787 (2002)

    Article  CAS  Google Scholar 

  34. D.-M. Liu, Q. Yang, T. Troczynski, W.J. Tseng, Biomaterials 23, 1679 (2002)

    Article  CAS  Google Scholar 

  35. S.J. Kalita, Functional nanostructures (Springer, New York, 2008), pp. 168–219

    Book  Google Scholar 

  36. H.K. Varma, S.N. Kalkura, R. Sivakumar, Ceram. Int. 24, 467 (1998)

    Article  CAS  Google Scholar 

  37. W.-J. Shih, Y.-F. Chen, M.-C. Wang, M.-H. Hon, J. Cryst. Growth 270, 211 (2004)

    Article  CAS  Google Scholar 

  38. M. F. Favatela, J. Otarola, V. B. Ayala-Peña, G. Dolcini, S. Perez, A. Torres Nicolini, V. A. Alvarez, and V. L. Lassalle, J. Inorg. Organomet. Polym. Mater. (2022).

  39. M. A. Gabal, E. A. Al-Harthy, Y. M. Al Angari, A. Awad, A. A. Al-Juaid, M. A. Hussein, A. M. Abdel-Daiem, T. R. Sobahi, and A. Saeed, J. Inorg. Organomet. Polym. Mater. (2022).

  40. H.H. Refai, A.A. Ganash, M.A. Hussein, J. Inorg. Organomet. Polym. Mater. 32, 713 (2022)

    Article  CAS  Google Scholar 

  41. K. Chinnaiah, T. Theivashanthi, K. Kannan, M.S. Revathy, V. Maik, H. Parangusan, S.C. Jeyaseelan, K. Gurushankar, J. Inorg. Organomet. Polym. Mater. 32, 583 (2022)

    Article  CAS  Google Scholar 

  42. Ş Duman, B. Bulut, Ceram. Int. 47, 13912 (2021)

    Article  CAS  Google Scholar 

  43. A. Farazin, S. Sahmani, M. Soleimani, A. Kolooshani, S. Saber-Samandari, A. Khandan, Ceram. Int. 47, 18339 (2021)

    Article  CAS  Google Scholar 

  44. J. Dorazilová, J. Muchová, K. Šmerková, S. Kočiová, P. Diviš, P. Kopel, R. Veselý, V. Pavliňáková, V. Adam, L. Vojtová, Nanomaterials 10, 1971 (2020)

    Article  CAS  Google Scholar 

  45. S. Zhang, J. Li, J. Li, N. Du, D. Li, F. Li, J. Man, RSC Adv. 10, 34308 (2020)

    Article  CAS  Google Scholar 

  46. A. Farazin, M. Mohammadimehr, A.H. Ghasemi, H. Naeimi, RSC Adv. 11, 32775 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Iranian Nanotechnology Development Committee for their support.

Funding

All experiments were performed on a personal budget.

Author information

Authors and Affiliations

Authors

Contributions

AF wrote the whole of article and analyzed mechanical, thermal, and biological properties. AHG analyzed FT-IR, XRD, EDS, and MAPPING. Both authors discussed the results, reviewed, and approved the final version of the manuscript.

Corresponding author

Correspondence to Ashkan Farazin.

Ethics declarations

Conflict of Interest

No conflict of interest exists in the submission of this article.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

The article is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farazin, A., Ghasemi, A.H. Design, Synthesis, and Fabrication of Chitosan/Hydroxyapatite Composite Scaffold for Use as Bone Replacement Tissue by Sol–Gel Method. J Inorg Organomet Polym 32, 3067–3082 (2022). https://doi.org/10.1007/s10904-022-02343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02343-8

Keywords

Navigation