Abstract
Injuries or bone defects are phenomena that are harmful to human health. In the field of bone scaffold tissue engineering, hydroxyapatite nanoparticles have been considered due to their high similarity to inorganic bone composition, but despite the similarity of chemical composition, the mechanical properties of synthetic hydroxyapatite (HA) are weak compared to bone. In this study, hydroxyapatite nanoparticles were synthesized by the sol–gel method. Then eight samples of composite scaffolds with chitosan (Chi) as biopolymer and different percentages of hydroxyapatite (0, 25, 50, and 75%) were prepared using a crosslinker of glutaraldehyde (GA) and sodium tripolyphosphate (TPP). To characterize the synthesized hydroxyapatite powder and scaffold samples, FTIR, FE-SEM, XRD, DTA-TG characterization tests, bioactivity analysis, and also strength test were performed. The results of the FESEM analysis show that hydroxyapatite particles with an average size of 48 nm have been synthesized by the sol–gel method. Also, FE-SEM images of scaffold samples show that as the amount of hydroxyapatite increases, the size of the pores decreases, and their distribution is uniform. FTIR spectroscopic analysis shows that both types of crosslinkers behave almost similarly and that the hydroxyapatite particles have established hydrogen bonds with the chitosan. Samples containing 75 wt.% of hydroxyapatite have the highest compressive strength and samples containing 50 wt.% of hydroxyapatite have the best behavior in terms of elongation. Scaffold samples were placed in simulated body fluid (SBF) for biological analysis for 1 week. FESEM images after removal of scaffolds from SBF solution show that the amount of calcium and phosphate ions adsorbed on scaffold samples containing 75 wt.% of hydroxyapatite is higher than other samples. One of the most important results of glutaraldehyde cross-linking with hydroxyapatite is that it controls the mechanical properties and adsorption rate without reducing the high biocompatibility of the composite. Also in this study, CHi-HA50%-TPP scaffolds exhibited the most promising physiochemical and biocompatible properties which can be used as an alternative regenerative material for bone tissue engineering.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
Data required to reproduce these findings have been given in the text.
References
A. Farazin, F. Aghadavoudi, M. Motififard, S. Saber-Samandari, A. Khandan, J. Appl. Comput. Mech. 7, 1907 (2021)
A. Farazin, H.A. Aghdam, M. Motififard, F. Aghadavoudi, A. Kordjamshidi, S. Saber-Samandari, S. Esmaeili, A. Khandan, J Nanoanalysis 6, 172–3 (2019)
Z.S. Kazeroni, M. Telloo, A. Farazin, S. Saber-Samandari, E. Sheikhbahaei, B. Kamyab-Moghadas, H. JoneidiYekta, S. Esmaeili, A. Khandan, AUT J. Mech. Eng. 5, 109 (2021)
A. Farazin, M. Mohammadimehr, Int. J. Adv. Manuf. Technol. 118, 103 (2022)
A. Farazin, A. Khan, J. Strain Anal. Eng. Des. (2021). https://doi.org/10.1177/03093247211043714
A. Farazin, Z. Torkpour, S. Dehghani, R. Mohammadi, M.D. Fahmy, S. Saber-Samandari, K.A. Labib, A. Khandan, Int. J. Basic Sci. Med. 6, 44 (2021)
D. Green, D. Walsh, S. Mann, R.O.C. Oreffo, Bone 30, 810 (2002)
A.B. Yeatts, J.P. Fisher, Bone 48, 171 (2011)
M. Giner, E. Chicardi, A.F. Costa, L. Santana, M.Á. Vázquez-Gámez, C. García-Garrido, M.A. Colmenero, F.J. Olmo-Montes, Y. Torres, M.J. Montoya-García, Metals (Basel). 11, 130 (2021)
J.J. Andrew, V. Arumugam, C. Santulli, Compos. Struct. 143, 63 (2016)
S. Gowid, E. Mahdi, S.S. Youssef, E. Moustafa, A. Mosleh, A. Shokry, Compos. Struct. 276, 114569 (2021)
C. Kang, Z. Liu, B. Shirinzadeh, H. Zhou, Y. Shi, T. Yu, P. Zhao, Compos. Struct. 267, 113861 (2021)
Q. Wu, Q. Wang, S. Ren, L. Zu, Q. Zhang, G. Zhang, Compos. Struct. 259, 113455 (2021)
L. Zu, H. Xu, B. Zhang, D. Li, B. Zi, Compos. Struct. 194, 119 (2018)
K. Moreno, J. García-Miranda, C. Hernández-Navarro, F. Ruiz-Guillén, L. Aguilera-Camacho, R. Lesso, A. Arizmendi-Morquecho, J. Compos. Mater. 49, 1345 (2015)
M.P. Bernardo, B.C.R. da Silva, L.H.C. Mattoso, J. Compos. Mater. 55, 2289 (2021)
A.M. Deliormanlı, J. Compos. Mater. 50, 917 (2016)
A. Asuvaran and G. Elatharasan, Silicon (2021).
K. Vishal, K. Rajkumar, P. Sabarinathan, and V. Dhinakaran, Silicon (2022).
G. Anand and S. Vishvanathperumal, Silicon (2022).
P. Vimala, L. L. Krishna, and S. S. Sharma, Silicon (2022).
R. Srinivasan, M. Kamaraj, D. Rajeev, S. Ravi, and N. Senthilkumar, Silicon (2022).
H. Idrees, S.Z.J. Zaidi, A. Sabir, R.U. Khan, X. Zhang, S. Hassan, Nanomaterials 10, 1970 (2020)
B.I. Oladapo, S.A. Zahedi, S.O. Ismail, D.B. Olawade, Renew. Sustain. Energy Rev. 150, 111505 (2021)
Q. Yang, J. Peng, H. Xiao, X. Xu, Z. Qian, Carbohydr. Polym. 278, 118952 (2022)
N. Castro, S. Ribeiro, M.M. Fernandes, C. Ribeiro, V. Cardoso, V. Correia, R. Minguez, S. Lanceros-Mendez, Adv. Biosyst. 4, 2000125 (2020)
D.T. Fox, D.E. Soltis, P.S. Soltis, T.-L. Ashman, Y. Van de Peer, Trends Cell Biol. 30, 688 (2020)
N. Mehrban, C.P. Molina, L.M. Quijano, J. Bowen, S.A. Johnson, J. Bartolacci, J.T. Chang, D.A. Scott, D.N. Woolfson, M.A. Birchall, S.F. Badylak, Acta Biomater. 111, 141 (2020)
Z. Wang, Y. Wang, J. Yan, K. Zhang, F. Lin, L. Xiang, L. Deng, Z. Guan, W. Cui, H. Zhang, Adv. Drug Deliv. Rev. 174, 504 (2021)
A.Z. Kharazi, M. Fathi, F. Bahmani, H. Fanian, J. Compos. Mater. 46, 2753 (2012)
M.L. Chinta, A. Velidandi, N.P.P. Pabbathi, S. Dahariya, S.R. Parcha, Int. J. Biol. Macromol. 175, 495 (2021)
P. Feng, J. Jia, M. Liu, S. Peng, Z. Zhao, C. Shuai, Mater. Des. 210, 110066 (2021)
X. Wang, Y. Li, J. Wei, K. de Groot, Biomaterials 23, 4787 (2002)
D.-M. Liu, Q. Yang, T. Troczynski, W.J. Tseng, Biomaterials 23, 1679 (2002)
S.J. Kalita, Functional nanostructures (Springer, New York, 2008), pp. 168–219
H.K. Varma, S.N. Kalkura, R. Sivakumar, Ceram. Int. 24, 467 (1998)
W.-J. Shih, Y.-F. Chen, M.-C. Wang, M.-H. Hon, J. Cryst. Growth 270, 211 (2004)
M. F. Favatela, J. Otarola, V. B. Ayala-Peña, G. Dolcini, S. Perez, A. Torres Nicolini, V. A. Alvarez, and V. L. Lassalle, J. Inorg. Organomet. Polym. Mater. (2022).
M. A. Gabal, E. A. Al-Harthy, Y. M. Al Angari, A. Awad, A. A. Al-Juaid, M. A. Hussein, A. M. Abdel-Daiem, T. R. Sobahi, and A. Saeed, J. Inorg. Organomet. Polym. Mater. (2022).
H.H. Refai, A.A. Ganash, M.A. Hussein, J. Inorg. Organomet. Polym. Mater. 32, 713 (2022)
K. Chinnaiah, T. Theivashanthi, K. Kannan, M.S. Revathy, V. Maik, H. Parangusan, S.C. Jeyaseelan, K. Gurushankar, J. Inorg. Organomet. Polym. Mater. 32, 583 (2022)
Ş Duman, B. Bulut, Ceram. Int. 47, 13912 (2021)
A. Farazin, S. Sahmani, M. Soleimani, A. Kolooshani, S. Saber-Samandari, A. Khandan, Ceram. Int. 47, 18339 (2021)
J. Dorazilová, J. Muchová, K. Šmerková, S. Kočiová, P. Diviš, P. Kopel, R. Veselý, V. Pavliňáková, V. Adam, L. Vojtová, Nanomaterials 10, 1971 (2020)
S. Zhang, J. Li, J. Li, N. Du, D. Li, F. Li, J. Man, RSC Adv. 10, 34308 (2020)
A. Farazin, M. Mohammadimehr, A.H. Ghasemi, H. Naeimi, RSC Adv. 11, 32775 (2021)
Acknowledgements
We are thankful to the Iranian Nanotechnology Development Committee for their support.
Funding
All experiments were performed on a personal budget.
Author information
Authors and Affiliations
Contributions
AF wrote the whole of article and analyzed mechanical, thermal, and biological properties. AHG analyzed FT-IR, XRD, EDS, and MAPPING. Both authors discussed the results, reviewed, and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of Interest
No conflict of interest exists in the submission of this article.
Ethical Approval
Not applicable.
Consent to Participate
Not applicable.
Consent to Publication
The article is approved by all authors for publication.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Farazin, A., Ghasemi, A.H. Design, Synthesis, and Fabrication of Chitosan/Hydroxyapatite Composite Scaffold for Use as Bone Replacement Tissue by Sol–Gel Method. J Inorg Organomet Polym 32, 3067–3082 (2022). https://doi.org/10.1007/s10904-022-02343-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10904-022-02343-8