Skip to main content

Advertisement

Log in

Upconversion of NaYF4: Yb, Er Nanoparticles Co-doped with Zr 4+ for Magnetic Phase Transition and Biomedical Imaging Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Tracking of cancer cells and cytotoxicity of normal tissue are the leading problem in cancer treatment. The magnetic and fluorescent multifunctional particles evolve as an emerging alternative for future target recognition. The ferromagnetic materials potentially treat the defects in the gene. Hence, ferromagnetic materials are the best for the treatment of cancer using gene therapy. Here, β-NaYF4: Yb, Er compounds doped with 10%, 20% and 30% Zirconium (Zr) are prepared through hydrothermal technique. Citrate itself is a highly biocompatible surface ligand that labels the imaging probe. The X-ray diffraction analysis is evident for transforming hexagonal to cubic phase via Zr doping in NaYF4: Yb, Er compounds. The electron microscopic images identify the hexagonal plates. This compound can emit visible light in response to infrared (IR) light irradiation. Especially β-NaYF4: Yb, Er, and 10% of Zr, Yb, Er tridoped NaYF4 compounds show enhanced red emission exploited in bioimaging applications. Insignificantly, 30% of Zr, Yb, Er tridoped NaYF4 concentration exhibit hexagonal and dominating cubic (α) phase, could decrease red emissions intensity and magnetisation value. This Zr material reveals peculiar magnetic properties, especially ferromagnetism at a lower magnetic field and produces paramagnetism at a higher magnetic field. Here, 10–20% Zr, Yb, Er tridoped NaYF4 concentrations exhibit better magnetic properties. The resultant compound is viable for the VERO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Yadollahpour, S. Rashidi, Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem. 31(November), 25–30 (2015). https://doi.org/10.13005/ojc/31.Special-Issue1.03

    Article  Google Scholar 

  2. P. Rasaili, N.K. Sharma, A. Bhattarai, Comparison of ferromagnetic materials: past work, recent trends, and applications. Condens. Matter. 7(1), 1–20 (2022). https://doi.org/10.3390/condmat7010012

    Article  CAS  Google Scholar 

  3. J. Liu, X. Liu, X. Kong, H. Zhang, Controlled synthesis, formation mechanism and upconversion luminescence of NaYF 4: Yb, Er nano-/submicrocrystals via ionothermal approach. J. Solid State Chem. 190, 98–103 (2012). https://doi.org/10.1016/j.jssc.2012.01.058

    Article  CAS  Google Scholar 

  4. N.C. Dyck, F.C.J.M. Van Veggel, G.P. Demopoulos, Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+, Er3+ crystals via annealing. ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013). https://doi.org/10.1021/am403100t

    Article  CAS  PubMed  Google Scholar 

  5. S. Kedar, R. Sudhir, M.I. Ahmad, M. Kumar, Green Route Synthesized Upconverting (NaYF4: Yb3+, Tm3+) Nanophosphors and Its Photophysical and Magnetic Properties, vol. 228 (Elsevier, New York, 2020)

    Google Scholar 

  6. P.S. Editorial, Doped nanostructures. Nanoscale 2(7), 1057 (2010). https://doi.org/10.1039/c005273f

    Article  CAS  Google Scholar 

  7. G. Tian, Z. Gu, L. Zhou et al., Mn 2+ dopant-controlled synthesis of NaYF 4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 24(9), 1226–1231 (2012). https://doi.org/10.1002/adma.201104741

    Article  CAS  PubMed  Google Scholar 

  8. Q. Huang, J. Yu, E. Ma, K. Lin, Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYO 4. J. Phys. Chem. C 114(10), 4719–4724 (2010). https://doi.org/10.1021/jp908645h

    Article  CAS  Google Scholar 

  9. F. Duttenhoefer, M.E. Mertens, J. Vizkelety, F. Gremse, V.A. Stadelmann, S. Sauerbier, Magnetic resonance imaging in zirconia-based dental implantology. Clin. Oral Implants Res. 26(10), 1195–1202 (2015). https://doi.org/10.1111/clr.12430

    Article  PubMed  Google Scholar 

  10. F. Zhang, G.B. Braun, A. Pallaoro et al., Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett. 12(1), 61–67 (2012). https://doi.org/10.1021/nl202949y

    Article  CAS  PubMed  Google Scholar 

  11. E. Zhao, X. Liu, D. Tang et al., 800 nm laser induced white light upconversion of Nd/Yb/Pr triply doped NaYF4 through a dual-sensitization strategy. Mater. Res. Bull. 2021(133), 111027 (2020). https://doi.org/10.1016/j.materresbull.2020.111027

    Article  CAS  Google Scholar 

  12. S. Fan, S. Wang, L. Yu, H. Sun, G. Gao, L. Hu, Ion-redistribution induced efficient upconversion in β-NaYF_4:20%Yb^3+,2%Er^3+ microcrystals with well controlled morphology and size. Opt. Express. 25(1), 180 (2017). https://doi.org/10.1364/oe.25.000180

    Article  CAS  PubMed  Google Scholar 

  13. R. Zhou, T. Ma, B. Qiu, X. Li, Controlled synthesis of β-NaYF4:Yb, Er microphosphors and upconversion luminescence property. Mater. Chem. Phys. 194, 23–28 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.033

    Article  CAS  Google Scholar 

  14. K. Du, X. Xu, S. Yao et al., Enhanced upconversion luminescence and controllable phase/shape of NaYF4:Yb/Er crystals through Cu2+ ion doping. CrystEngComm 20(14), 1945–1953 (2018). https://doi.org/10.1039/c7ce02227a

    Article  CAS  Google Scholar 

  15. H. Yu, W. Cao, Q. Huang, E. Ma, X. Zhang, J. Yu, Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: enhanced emission intensity and reduced decay time. J. Solid State Chem. 207, 170–177 (2013). https://doi.org/10.1016/j.jssc.2013.09.017

    Article  CAS  Google Scholar 

  16. N. Jurga, D. Przybylska, P. Kamiński, A. Tymiński, B.F. Grześkowiak, T. Grzyb, Influence of the synthesis route on the spectroscopic, cytotoxic, and temperature-sensing properties of oleate-capped and ligand-free core/shell nanoparticles. J. Colloid Interface Sci. 606, 1421–1434 (2022). https://doi.org/10.1016/j.jcis.2021.08.093

    Article  CAS  PubMed  Google Scholar 

  17. L.Y. Ang, M.E. Lim, L.C. Ong, Y. Zhang, Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine 6(7), 1273–1288 (2011). https://doi.org/10.2217/nnm.11.108

    Article  PubMed  Google Scholar 

  18. A. Sedlmeier, H.H. Gorris, Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 44(6), 1526–1560 (2015). https://doi.org/10.1039/c4cs00186a

    Article  CAS  PubMed  Google Scholar 

  19. E. Ureña-Horno, M.E. Kyriazi, A.G. Kanaras, A method for the growth of uniform silica shells on different size and morphology upconversion nanoparticles. Nanoscale Adv. 3(12), 3522–3529 (2021). https://doi.org/10.1039/d0na00858c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. U. Kostiv, M.M. Natile, D. Jirák et al., PEG-neridronate-modified NaYF4:Gd3+, Yb3+, Tm3+/NaGdF4 core-shell upconverting nanoparticles for bimodal magnetic resonance/optical luminescence imaging. ACS Omega 6(22), 14420–14429 (2021). https://doi.org/10.1021/acsomega.1c01313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. Oleksa, H. Macková, H. Engstová et al., Poly(N, N-dimethylacrylamide)-coated upconverting NaYF4:Yb, Er@NaYF4: Nd core–shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-00845-y

    Article  CAS  Google Scholar 

  22. V. Bastos, P. Oskoei, E. Andresen et al., Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep. 12(1), 1–13 (2022). https://doi.org/10.1038/s41598-022-07630-5

    Article  CAS  Google Scholar 

  23. X. Zhai, J. Li, S. Liu et al., Polymer-based optical waveguide amplifiers. Opt. Mater. Express. 3(2), 270–277 (2013). https://doi.org/10.1364/OME.3.000270

    Article  CAS  Google Scholar 

  24. X. Wu, Z. Tang, S. Hu, H. Yan, Z. Xi, Y. Liu, NaLuF4:Yb3+, Er3+ bifunctional microcrystals codoped with Gd3+ or Dy3+ ions: Enhanced upconversion luminescence and ferromagnetic-paramagnetic transition. J. Alloys Compd. 684, 105–111 (2016). https://doi.org/10.1016/j.jallcom.2016.05.074

    Article  CAS  Google Scholar 

  25. Y. Li, C. Liu, P. Zhang et al., Doping lanthanide nanocrystals with non-lanthanide ions to simultaneously enhance up- and down-conversion luminescence. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00832

    Article  PubMed  PubMed Central  Google Scholar 

  26. D.Q. Chen, L. Lei, R. Zhang, A.P. Yang, J. Xu, Y.S. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem. Commun. 48, 10630–10632 (2012). https://doi.org/10.1039/C2CC35480B

    Article  CAS  Google Scholar 

  27. F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  28. K. Omri, F. Alharbi, Microstructural properties and improvement in photoluminescence thermometry of Mn-activated single-phased Zn–SO–Mn phosphors. J. Mater. Sci. 32(19), 24229–24239 (2021). https://doi.org/10.1007/s10854-021-06888-1

    Article  CAS  Google Scholar 

  29. W. Niu, S. Wu, S. Zhang, J. Li, L. Li, Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles. Dalt. Trans. 40(13), 3305–3314 (2011). https://doi.org/10.1039/c0dt01344g

    Article  CAS  Google Scholar 

  30. A. Kumar, S.P. Tiwari, J.C.G.E. Da Silva, K. Kumar, Security writing application of thermal decomposition assisted NaYF4:Er3+/Yb3+upconversion phosphor. Laser Phys. Lett. (2018). https://doi.org/10.1088/1612-202X/aab123

    Article  Google Scholar 

  31. L.T. Kieu Giang, Ł Marciniak, K. Kamil Żur et al., Zirconium metal organic framework for design of tetragonal rare earth-doped zirconia nanoparticles. J. Rare Earths. 37(11), 1230–1236 (2019). https://doi.org/10.1016/j.jre.2019.03.003

    Article  CAS  Google Scholar 

  32. J. Sun, J. Xian, X. Zhang, H. Du, Hydrothermal synthesis of SrF2:Yb3+/Er3+ micro-/nanocrystals with multiform morphologies and upconversion properties. J. Rare Earths. 29(1), 32–38 (2011). https://doi.org/10.1016/S1002-0721(10)60396-1

    Article  CAS  Google Scholar 

  33. S. Namagal, N.V. Jaya, M. Muralidharan, S. Sumithra, Optical and magnetic properties of pure and Er, Yb-doped β-NaYF4 hexagonal plates for biomedical applications. J. Mater. Sci. 31(14), 11398–11410 (2020). https://doi.org/10.1007/s10854-020-03689-w

    Article  CAS  Google Scholar 

  34. Y. Song, G. Gong, J. Du et al., Synthesis and inkjet printing of NaYF 4: Ln 3+ @NaYF 4 core-shell nanoparticles with enhanced upconversion fluorescence for anti-counterfeiting applications. J. Nanosci. Nanotechnol. 20(3), 1511–1519 (2019). https://doi.org/10.1166/jnn.2020.17353

    Article  CAS  Google Scholar 

  35. D. Chen, L. Lei, R. Zhang, A. Yang, J. Xu, Y. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm): Na3Zr(Hf)F7nanocrystals. Chem. Commun. 48(86), 10630–10632 (2012). https://doi.org/10.1039/c2cc35480b

    Article  CAS  Google Scholar 

  36. X. He, B. Yan, High-energy organic group-induced spectrally pure upconversion emission in novel zirconate-/hafnate-based nanocrystals. Cryst. Eng. Comm.  17, 7169–7174 (2015). https://doi.org/10.1039/C5CE01195G

    Article  CAS  Google Scholar 

  37. K. Janani, S. Ramasubramanian, A.K. Soni, V.K. Rai, P. Thiyagarajan, Luminescence properties of LiYF4:Yb3+, Er3+ phosphors: a study on influence of synthesis temperature and dopant concentration. Optik (Stuttg). 169(May), 147–155 (2018). https://doi.org/10.1016/j.ijleo.2018.05.023

    Article  CAS  Google Scholar 

  38. S. He, H. Xia, Q. Tang et al., Efficient upconversion luminescence in Er3+/Yb3+ co-doped cubic NaYF4 single crystals by vertical Bridgman method with KF flux. Chin. J. Phys. 54(2), 256–262 (2016). https://doi.org/10.1016/j.cjph.2016.04.011

    Article  CAS  Google Scholar 

  39. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42(7), 8940–8948 (2016). https://doi.org/10.1016/j.ceramint.2016.02.151

    Article  CAS  Google Scholar 

  40. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. Mater. 29(1), 203–212 (2019). https://doi.org/10.1007/s10904-018-0979-4

    Article  CAS  Google Scholar 

  41. K. Omri, S. Gouadria, Dielectric investigation and effect of low copper doping on optical and morphology properties of ZO-Cu nanoparticles. J. Mater. Sci. 32(12), 17021–17031 (2021). https://doi.org/10.1007/s10854-021-06268-9

    Article  CAS  Google Scholar 

  42. P. Padhye, P. Poddar, Static and dynamic photoluminescence and photocatalytic properties of uniform, monodispersed up/down-converting, highly luminescent, lanthanide-ion-doped β-NaYF4 phosphor microcrystals with controlled multiform morphologies. J. Mater. Chem. A 2(45), 19189–19200 (2014). https://doi.org/10.1039/c4ta04274c

    Article  CAS  Google Scholar 

  43. A.A. Ansari, R. Yadav, S.B. Rai, Enhanced luminescence efficiency of aqueous dispersible NaYF4:Yb/Er nanoparticles and the effect of surface coating. RSC Adv. 6(26), 22074–22082 (2016). https://doi.org/10.1039/c6ra00265j

    Article  CAS  Google Scholar 

  44. V.K. Komarala, Y. Wang, M. Xiao, Nonlinear optical properties of Er3+/Yb3+-doped NaYF4 nanocrystals. Chem. Phys. Lett. 490(4–6), 189–193 (2010). https://doi.org/10.1016/j.cplett.2010.03.041

    Article  CAS  Google Scholar 

  45. T.M.D. Cao, T.T.G. Le, T.P.N. Nguyen, T.A.N. Dau, V.T. Nguyen, T.T.V. Tran, Investigating the effect of Yb3+ and Er3+ concentration on red/green luminescent ratio in β-NaYF4: Er, Yb nanocrystals using spectroscopic techniques. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128014

    Article  Google Scholar 

  46. S.H. Nannuri, S.D. Kulkarni, C.C.K. Subash, S. Chidangil, S.D. George, Post annealing induced manipulation of phase and upconversion luminescence of Cr3+ doped NaYF4:Yb, Er crystals. RSC Adv. 9(17), 9364–9372 (2019). https://doi.org/10.1039/c9ra00115h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J.Y. Law, J. Rial, M. Villanueva et al., Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles. J. Alloys Compd. 712, 373–378 (2017). https://doi.org/10.1016/j.jallcom.2017.04.038

    Article  CAS  Google Scholar 

  48. P.J. Van Der Zaag, A. Noordermeer, M.T. Johnson, P.F. Bongers, Comment on size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 68(20), 3112 (1992). https://doi.org/10.1103/PhysRevLett.68.3112

    Article  PubMed  Google Scholar 

  49. P.M. Md Gazzali, G. Chandrasekaran, Enhancement of hard magnetic properties of BaFe12O19 nanoparticles. J. Mater. Sci. 25(2), 702–709 (2014). https://doi.org/10.1007/s10854-013-1632-1

    Article  CAS  Google Scholar 

  50. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. Al-Lohedan, Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Mater. Chem. Phys. 204, 410–419 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.077

    Article  CAS  Google Scholar 

  51. Q. Chen, Z. Li, B. Miao, Q. Ma, Thermal, nonlinear, magnetic and faraday rotation properties of sol-gel diamagnetic glass /NaYF4: Fe, Ho3+: role of magnetic ions. J. Alloys Compd. 858, 157631 (2021). https://doi.org/10.1016/j.jallcom.2020.157631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Department of Science & Technology, Government of India, for providing financial support to Mrs Namagal S vide reference no.SR/WOS-A/PM-97/2017 under Women Scientist Scheme (WOS-A) to carry out this work, CIF—Pondicherry University for characterisation facilities and Greensmed Labs for cytotoxicity study.

Funding

Funding was provided by Department of Science and Technology India (Grant Number SR/WOS-A/PM-97/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Namagal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namagal, S., Victor Jaya, N., Nithyaa, N. et al. Upconversion of NaYF4: Yb, Er Nanoparticles Co-doped with Zr 4+ for Magnetic Phase Transition and Biomedical Imaging Applications. J Inorg Organomet Polym 32, 3128–3140 (2022). https://doi.org/10.1007/s10904-022-02342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02342-9

Keywords

Navigation