A. Yadollahpour, S. Rashidi, Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem. 31(November), 25–30 (2015). https://doi.org/10.13005/ojc/31.Special-Issue1.03
Article
Google Scholar
P. Rasaili, N.K. Sharma, A. Bhattarai, Comparison of ferromagnetic materials: past work, recent trends, and applications. Condens. Matter. 7(1), 1–20 (2022). https://doi.org/10.3390/condmat7010012
CAS
Article
Google Scholar
J. Liu, X. Liu, X. Kong, H. Zhang, Controlled synthesis, formation mechanism and upconversion luminescence of NaYF 4: Yb, Er nano-/submicrocrystals via ionothermal approach. J. Solid State Chem. 190, 98–103 (2012). https://doi.org/10.1016/j.jssc.2012.01.058
CAS
Article
Google Scholar
N.C. Dyck, F.C.J.M. Van Veggel, G.P. Demopoulos, Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+, Er3+ crystals via annealing. ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013). https://doi.org/10.1021/am403100t
CAS
Article
PubMed
Google Scholar
S. Kedar, R. Sudhir, M.I. Ahmad, M. Kumar, Green Route Synthesized Upconverting (NaYF4: Yb3+, Tm3+) Nanophosphors and Its Photophysical and Magnetic Properties, vol. 228 (Elsevier, New York, 2020)
Google Scholar
P.S. Editorial, Doped nanostructures. Nanoscale 2(7), 1057 (2010). https://doi.org/10.1039/c005273f
CAS
Article
Google Scholar
G. Tian, Z. Gu, L. Zhou et al., Mn 2+ dopant-controlled synthesis of NaYF 4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 24(9), 1226–1231 (2012). https://doi.org/10.1002/adma.201104741
CAS
Article
PubMed
Google Scholar
Q. Huang, J. Yu, E. Ma, K. Lin, Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYO 4. J. Phys. Chem. C 114(10), 4719–4724 (2010). https://doi.org/10.1021/jp908645h
CAS
Article
Google Scholar
F. Duttenhoefer, M.E. Mertens, J. Vizkelety, F. Gremse, V.A. Stadelmann, S. Sauerbier, Magnetic resonance imaging in zirconia-based dental implantology. Clin. Oral Implants Res. 26(10), 1195–1202 (2015). https://doi.org/10.1111/clr.12430
Article
PubMed
Google Scholar
F. Zhang, G.B. Braun, A. Pallaoro et al., Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett. 12(1), 61–67 (2012). https://doi.org/10.1021/nl202949y
CAS
Article
PubMed
Google Scholar
E. Zhao, X. Liu, D. Tang et al., 800 nm laser induced white light upconversion of Nd/Yb/Pr triply doped NaYF4 through a dual-sensitization strategy. Mater. Res. Bull. 2021(133), 111027 (2020). https://doi.org/10.1016/j.materresbull.2020.111027
CAS
Article
Google Scholar
S. Fan, S. Wang, L. Yu, H. Sun, G. Gao, L. Hu, Ion-redistribution induced efficient upconversion in β-NaYF_4:20%Yb^3+,2%Er^3+ microcrystals with well controlled morphology and size. Opt. Express. 25(1), 180 (2017). https://doi.org/10.1364/oe.25.000180
CAS
Article
PubMed
Google Scholar
R. Zhou, T. Ma, B. Qiu, X. Li, Controlled synthesis of β-NaYF4:Yb, Er microphosphors and upconversion luminescence property. Mater. Chem. Phys. 194, 23–28 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.033
CAS
Article
Google Scholar
K. Du, X. Xu, S. Yao et al., Enhanced upconversion luminescence and controllable phase/shape of NaYF4:Yb/Er crystals through Cu2+ ion doping. CrystEngComm 20(14), 1945–1953 (2018). https://doi.org/10.1039/c7ce02227a
CAS
Article
Google Scholar
H. Yu, W. Cao, Q. Huang, E. Ma, X. Zhang, J. Yu, Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: enhanced emission intensity and reduced decay time. J. Solid State Chem. 207, 170–177 (2013). https://doi.org/10.1016/j.jssc.2013.09.017
CAS
Article
Google Scholar
N. Jurga, D. Przybylska, P. Kamiński, A. Tymiński, B.F. Grześkowiak, T. Grzyb, Influence of the synthesis route on the spectroscopic, cytotoxic, and temperature-sensing properties of oleate-capped and ligand-free core/shell nanoparticles. J. Colloid Interface Sci. 606, 1421–1434 (2022). https://doi.org/10.1016/j.jcis.2021.08.093
CAS
Article
PubMed
Google Scholar
L.Y. Ang, M.E. Lim, L.C. Ong, Y. Zhang, Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine 6(7), 1273–1288 (2011). https://doi.org/10.2217/nnm.11.108
Article
PubMed
Google Scholar
A. Sedlmeier, H.H. Gorris, Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 44(6), 1526–1560 (2015). https://doi.org/10.1039/c4cs00186a
CAS
Article
PubMed
Google Scholar
E. Ureña-Horno, M.E. Kyriazi, A.G. Kanaras, A method for the growth of uniform silica shells on different size and morphology upconversion nanoparticles. Nanoscale Adv. 3(12), 3522–3529 (2021). https://doi.org/10.1039/d0na00858c
CAS
Article
PubMed
PubMed Central
Google Scholar
U. Kostiv, M.M. Natile, D. Jirák et al., PEG-neridronate-modified NaYF4:Gd3+, Yb3+, Tm3+/NaGdF4 core-shell upconverting nanoparticles for bimodal magnetic resonance/optical luminescence imaging. ACS Omega 6(22), 14420–14429 (2021). https://doi.org/10.1021/acsomega.1c01313
CAS
Article
PubMed
PubMed Central
Google Scholar
V. Oleksa, H. Macková, H. Engstová et al., Poly(N, N-dimethylacrylamide)-coated upconverting NaYF4:Yb, Er@NaYF4: Nd core–shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-00845-y
CAS
Article
Google Scholar
V. Bastos, P. Oskoei, E. Andresen et al., Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep. 12(1), 1–13 (2022). https://doi.org/10.1038/s41598-022-07630-5
CAS
Article
Google Scholar
X. Zhai, J. Li, S. Liu et al., Polymer-based optical waveguide amplifiers. Opt. Mater. Express. 3(2), 270–277 (2013). https://doi.org/10.1364/OME.3.000270
CAS
Article
Google Scholar
X. Wu, Z. Tang, S. Hu, H. Yan, Z. Xi, Y. Liu, NaLuF4:Yb3+, Er3+ bifunctional microcrystals codoped with Gd3+ or Dy3+ ions: Enhanced upconversion luminescence and ferromagnetic-paramagnetic transition. J. Alloys Compd. 684, 105–111 (2016). https://doi.org/10.1016/j.jallcom.2016.05.074
CAS
Article
Google Scholar
Y. Li, C. Liu, P. Zhang et al., Doping lanthanide nanocrystals with non-lanthanide ions to simultaneously enhance up- and down-conversion luminescence. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00832
Article
PubMed
PubMed Central
Google Scholar
D.Q. Chen, L. Lei, R. Zhang, A.P. Yang, J. Xu, Y.S. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem. Commun. 48, 10630–10632 (2012). https://doi.org/10.1039/C2CC35480B
CAS
Article
Google Scholar
F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015). https://doi.org/10.1039/b000000x
Article
Google Scholar
K. Omri, F. Alharbi, Microstructural properties and improvement in photoluminescence thermometry of Mn-activated single-phased Zn–SO–Mn phosphors. J. Mater. Sci. 32(19), 24229–24239 (2021). https://doi.org/10.1007/s10854-021-06888-1
CAS
Article
Google Scholar
W. Niu, S. Wu, S. Zhang, J. Li, L. Li, Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles. Dalt. Trans. 40(13), 3305–3314 (2011). https://doi.org/10.1039/c0dt01344g
CAS
Article
Google Scholar
A. Kumar, S.P. Tiwari, J.C.G.E. Da Silva, K. Kumar, Security writing application of thermal decomposition assisted NaYF4:Er3+/Yb3+upconversion phosphor. Laser Phys. Lett. (2018). https://doi.org/10.1088/1612-202X/aab123
Article
Google Scholar
L.T. Kieu Giang, Ł Marciniak, K. Kamil Żur et al., Zirconium metal organic framework for design of tetragonal rare earth-doped zirconia nanoparticles. J. Rare Earths. 37(11), 1230–1236 (2019). https://doi.org/10.1016/j.jre.2019.03.003
CAS
Article
Google Scholar
J. Sun, J. Xian, X. Zhang, H. Du, Hydrothermal synthesis of SrF2:Yb3+/Er3+ micro-/nanocrystals with multiform morphologies and upconversion properties. J. Rare Earths. 29(1), 32–38 (2011). https://doi.org/10.1016/S1002-0721(10)60396-1
CAS
Article
Google Scholar
S. Namagal, N.V. Jaya, M. Muralidharan, S. Sumithra, Optical and magnetic properties of pure and Er, Yb-doped β-NaYF4 hexagonal plates for biomedical applications. J. Mater. Sci. 31(14), 11398–11410 (2020). https://doi.org/10.1007/s10854-020-03689-w
CAS
Article
Google Scholar
Y. Song, G. Gong, J. Du et al., Synthesis and inkjet printing of NaYF 4: Ln 3+ @NaYF 4 core-shell nanoparticles with enhanced upconversion fluorescence for anti-counterfeiting applications. J. Nanosci. Nanotechnol. 20(3), 1511–1519 (2019). https://doi.org/10.1166/jnn.2020.17353
CAS
Article
Google Scholar
D. Chen, L. Lei, R. Zhang, A. Yang, J. Xu, Y. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm): Na3Zr(Hf)F7nanocrystals. Chem. Commun. 48(86), 10630–10632 (2012). https://doi.org/10.1039/c2cc35480b
CAS
Article
Google Scholar
X. He, B. Yan, High-energy organic group-induced spectrally pure upconversion emission in novel zirconate-/hafnate-based nanocrystals. Cryst. Eng. Comm. 17, 7169–7174 (2015). https://doi.org/10.1039/C5CE01195G
CAS
Article
Google Scholar
K. Janani, S. Ramasubramanian, A.K. Soni, V.K. Rai, P. Thiyagarajan, Luminescence properties of LiYF4:Yb3+, Er3+ phosphors: a study on influence of synthesis temperature and dopant concentration. Optik (Stuttg). 169(May), 147–155 (2018). https://doi.org/10.1016/j.ijleo.2018.05.023
CAS
Article
Google Scholar
S. He, H. Xia, Q. Tang et al., Efficient upconversion luminescence in Er3+/Yb3+ co-doped cubic NaYF4 single crystals by vertical Bridgman method with KF flux. Chin. J. Phys. 54(2), 256–262 (2016). https://doi.org/10.1016/j.cjph.2016.04.011
CAS
Article
Google Scholar
K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42(7), 8940–8948 (2016). https://doi.org/10.1016/j.ceramint.2016.02.151
CAS
Article
Google Scholar
K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. Mater. 29(1), 203–212 (2019). https://doi.org/10.1007/s10904-018-0979-4
CAS
Article
Google Scholar
K. Omri, S. Gouadria, Dielectric investigation and effect of low copper doping on optical and morphology properties of ZO-Cu nanoparticles. J. Mater. Sci. 32(12), 17021–17031 (2021). https://doi.org/10.1007/s10854-021-06268-9
CAS
Article
Google Scholar
P. Padhye, P. Poddar, Static and dynamic photoluminescence and photocatalytic properties of uniform, monodispersed up/down-converting, highly luminescent, lanthanide-ion-doped β-NaYF4 phosphor microcrystals with controlled multiform morphologies. J. Mater. Chem. A 2(45), 19189–19200 (2014). https://doi.org/10.1039/c4ta04274c
CAS
Article
Google Scholar
A.A. Ansari, R. Yadav, S.B. Rai, Enhanced luminescence efficiency of aqueous dispersible NaYF4:Yb/Er nanoparticles and the effect of surface coating. RSC Adv. 6(26), 22074–22082 (2016). https://doi.org/10.1039/c6ra00265j
CAS
Article
Google Scholar
V.K. Komarala, Y. Wang, M. Xiao, Nonlinear optical properties of Er3+/Yb3+-doped NaYF4 nanocrystals. Chem. Phys. Lett. 490(4–6), 189–193 (2010). https://doi.org/10.1016/j.cplett.2010.03.041
CAS
Article
Google Scholar
T.M.D. Cao, T.T.G. Le, T.P.N. Nguyen, T.A.N. Dau, V.T. Nguyen, T.T.V. Tran, Investigating the effect of Yb3+ and Er3+ concentration on red/green luminescent ratio in β-NaYF4: Er, Yb nanocrystals using spectroscopic techniques. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128014
Article
Google Scholar
S.H. Nannuri, S.D. Kulkarni, C.C.K. Subash, S. Chidangil, S.D. George, Post annealing induced manipulation of phase and upconversion luminescence of Cr3+ doped NaYF4:Yb, Er crystals. RSC Adv. 9(17), 9364–9372 (2019). https://doi.org/10.1039/c9ra00115h
CAS
Article
Google Scholar
J.Y. Law, J. Rial, M. Villanueva et al., Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles. J. Alloys Compd. 712, 373–378 (2017). https://doi.org/10.1016/j.jallcom.2017.04.038
CAS
Article
Google Scholar
P.J. Van Der Zaag, A. Noordermeer, M.T. Johnson, P.F. Bongers, Comment on size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 68(20), 3112 (1992). https://doi.org/10.1103/PhysRevLett.68.3112
Article
PubMed
Google Scholar
P.M. Md Gazzali, G. Chandrasekaran, Enhancement of hard magnetic properties of BaFe12O19 nanoparticles. J. Mater. Sci. 25(2), 702–709 (2014). https://doi.org/10.1007/s10854-013-1632-1
CAS
Article
Google Scholar
K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. Al-Lohedan, Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Mater. Chem. Phys. 204, 410–419 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.077
CAS
Article
Google Scholar
Q. Chen, Z. Li, B. Miao, Q. Ma, Thermal, nonlinear, magnetic and faraday rotation properties of sol-gel diamagnetic glass /NaYF4: Fe, Ho3+: role of magnetic ions. J. Alloys Compd. 858, 157631 (2021). https://doi.org/10.1016/j.jallcom.2020.157631
CAS
Article
Google Scholar