Skip to main content

Graphitic Carbon Nitride Decorated with Iron Oxide Nanoparticles as a Novel High-Performance Biomimetic Electrochemical Sensing Platform for Paracetamol Detection

Abstract

Design and development of new generation smart sensors for medical applications have gained considerable interest of research community in the recent past. In this work, we propose the fabrication of highly sensitive paracetamol sensors-based iron oxide nanoparticles intercalated with graphitic carbon nitride (g-C3N4) (GCN) via insitu chemical synthesis. Structural features of the composites were analyzed through SEM, EDX, XRD, FTIR, and UV-Visible spectroscopic techniques. Presence of iron oxide nanoparticles in GCN, significantly improved the conductivity bare GCN from 16 to 125 S cm−1 due to extended π–π conjugation and large surface area in the composite system. The GCN-Iron oxide (GCN-FO) nanocomposite has been employed as an electrochemical sensing platform for non-enzymatic detection of paracetamol. The electrochemical studies and cyclic voltammetry (CV) results shows that the GCN-FO composite exhibit superior electrochemical properties due to their lower values of the oxidation and reduction potentials. Electrochemical impedance spectroscopy (EIS) studies indicate decreased charge-transfer resistance for iron oxide doped GCN composite in compare to base GCN. The improved electrochemical sensing performance of modified GCN-FO composite electrode is attributed to the formation heterojunctions between iron oxide nanoparticles and GCN. The modified GCN-FO electrodes were employed for non-enzymatic electrochemical detection of PR. The GCN-FO composite electrode shows excellent sensitivity towards PR with a LOD 0.3 μM. Furthermore, the modified GCN-FO electrodes show excellent reproducibility, selectivity, stability and anti-interference performance. Due to its low-cost fabrication, superior electrochemical sensing performance, these modified GCN-FO electrodes could be a promising material for the detection of paracetamol at low concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

References

  1. X. Ge, Z. Xia, S. Guo, Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater. 29, 1900318 (2019)

    Article  CAS  Google Scholar 

  2. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116, 7159–7329 (2016)

    CAS  PubMed  Article  Google Scholar 

  3. G. Yanalak, F. Doganay, Z. Eroglu, H. Kucukkececi, E. Aslan, M. Ozmen, S.Z. Bas, O. Metin, I.H. Patir, Ternary nanocomposites of mesoporous graphitic carbon nitride/black phosphorus/gold nanoparticles (mpg-CN/BP-Au) for photocatalytic hydrogen evolution and electrochemical sensing of paracetamol. Appl. Surf. Sci. 557, 149755 (2021)

    CAS  Article  Google Scholar 

  4. H. Dai, S. Zhang, G. Xu, L. Gong, M. Fu, X. Li, S. Lu, C. Zeng, Y. Jiang, Y. Lin, G. Chen, A sensitive arecoline photoelectrochemical sensor based on graphitic carbon nitride nanosheets activated by carbon nanohorns. RSC Adv. 4, 11099–11102 (2014)

    CAS  Article  Google Scholar 

  5. J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 5, 8921–8924 (2013)

    CAS  PubMed  Article  Google Scholar 

  6. W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13, 757–770 (2015)

    CAS  Article  Google Scholar 

  7. B. Li, C. Lai, G. Zeng, D. Huang, L. Qin, M. Zhang, M. Cheng, X. Liu, H. Yi, C. Zhou, Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications. Small 15, 1804565 (2019)

    Article  CAS  Google Scholar 

  8. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photo responsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2012)

    PubMed  Article  CAS  Google Scholar 

  9. G.W. Woyessa, J.B. Dela Cruz, M. Rameez, C.H. Hung, Nanocomposite catalyst of graphitic carbon nitride and Cu/Fe mixed metal oxide for electrochemical CO2 reduction to CO. Appl. Catal. B Environ. 291, 120052 (2021)

    CAS  Article  Google Scholar 

  10. M.G. Ashritha, K. Hareesh, A review on graphitic carbon nitride based binary nanocomposites as supercapacitors. J. Energy Storage 32, 101840 (2020)

    Article  Google Scholar 

  11. S. Bonyadi, K.H. Ghanbari, M. Ghiasi, All electrochemical synthesis of a three-dimensional mesoporous polymeric g-C3N4/PANI/CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. New J. Chem. 44(8), 3412–3424 (2020)

    CAS  Article  Google Scholar 

  12. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X.C. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013)

    CAS  PubMed  Article  Google Scholar 

  13. Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68 (2012)

    CAS  Article  Google Scholar 

  14. L. Liu, M. Wang, C. Wang, In-situ synthesis of graphitic carbon nitride/iron oxide-copper composites and their application in the electrochemical detection of glucose. Electro. Chim. Acta 265, 275–283 (2018)

    CAS  Article  Google Scholar 

  15. H. Yin, K. Shang, X. Meng, Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim. Acta 175, 39–46 (2011)

    CAS  Article  Google Scholar 

  16. S.J.R. Prabakar, S.S. Narayanan, Amperometric determination of paracetamol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode. Talanta 72, 1818–1827 (2007)

    CAS  PubMed  Article  Google Scholar 

  17. G.M. Pacifici, K. Allegaert, Clinical pharmacology of paracetamol in neonates: a review. Curr. Ther. Res. Clin. Exp 77, 24–30 (2015)

    CAS  PubMed  Article  Google Scholar 

  18. D. Chiumello, M. Gotti, G. Vergani, Paracetamol in fever in critically ill patients-an update. J Crit Care 38, 245–252 (2017)

    CAS  PubMed  Article  Google Scholar 

  19. C. Deng, Y. Deng, B. Wang, X. Yang, Gas chromatography– mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots. J Chromatogr. B 780(2), 407–413 (2002)

    CAS  Article  Google Scholar 

  20. M. Shalauddin, S. Akhter, S. Bagheri, M.S.A. Karim, N.A. Kadri, W.J. Basirun, Immobilized copper ions on MWCNTS-Chitosan thin film: enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution. Int. J. Hydrogen Energy 42, 19951–19960 (2017)

    CAS  Article  Google Scholar 

  21. S. Cheemalapati, S. Palanisamy, V. Mani, S.M. Chen, Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/ graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 117, 297–304 (2013)

    CAS  PubMed  Article  Google Scholar 

  22. A. Kutluay, M. Aslanoglu, Modification of electrodes using conductive porous layers to confer selectivity for the voltametric detection of paracetamol in the presence of ascorbic acid, dopamine and uric acid. Sens. Actuators B 185, 398–404 (2013)

    CAS  Article  Google Scholar 

  23. H. Filik, A.A. Avan, S. Aydar, G. Cetintas, Determination of acetaminophen in the presence of ascorbic acid using a glassy carbon electrode modified with poly (caffeic acid). Int. J. Electrochem. Sci. 9, 148–160 (2014)

    Google Scholar 

  24. A.U. Alam, Y. Qin, M.M.R. Howlader, N.X. Hu, M.J. Deen, Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens. Actuators B 254, 896–909 (2018)

    CAS  Article  Google Scholar 

  25. S. Reddy, B.E.K. Swamy, H. Jayadevappa, CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim. Acta 61, 78–86 (2012)

    CAS  Article  Google Scholar 

  26. H. Ghadimi, R.M.A. Tehrani, A.S.M. Ali, N. Mohamed, S.A. Ghani, Sensitive voltametric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta 765, 70–76 (2013)

    CAS  PubMed  Article  Google Scholar 

  27. W.D. Zhang, B. Xu, L.C. Jiang, Functional hybrid materials based on carbon nanotubes and metal oxides. J. Mater. Chem 20, 6383–6391 (2010)

    CAS  Article  Google Scholar 

  28. Z. Zhuang, J. Li, R. Xu, D. Xiao, Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int. J. Electrochem. Sci. 6, 2149–2161 (2011)

    CAS  Google Scholar 

  29. L. Liu, L. Hongying, C. Wang, G. Zhimin Ao, Wang, Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection. Electrochim. Acta 206, 259–269 (2016)

    CAS  Article  Google Scholar 

  30. Y. Yan, R. Jamal, Z. Yu, R. Zhang, W. Zhang, Y. Ge, Y. Liu, T. Abdiryim, Composites of thiol-grafted PEDOT with N-doped graphene or graphitic carbon nitride as an electrochemical sensor for the detection of paracetamol. J Mater Sci. 55, 5571–5586 (2020)

    CAS  Article  Google Scholar 

  31. S. Bonyadi, G.M. Ghiasi, All-electrochemical synthesis of a three-dimensional mesoporous polymeric g-C3N4/PANI/ CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. New J. Chem. 44, 3412 (2020)

    CAS  Article  Google Scholar 

  32. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012)

    CAS  PubMed  Article  Google Scholar 

  33. N. Badi, S. Khasim, A. Pasha, A.S. Alatawi, M. Lakshmi, Silver nanoparticles intercalated polyaniline composites for high electrochemical anti-corrosion performance in 6061 aluminum alloy-based solar energy frameworks. J. Bio- Tribo-Corros. 6, 123 (2020)

    Article  Google Scholar 

  34. X. Dai, G.G. Wildgoose, C. Salter, A. Crossley, R.G. Compton, Electroanalysis using macro, micro and nano chemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Anal. Chem. 78, 6102–6108 (2006)

    CAS  PubMed  Article  Google Scholar 

  35. Y.C. Charles, J.B. Michael, J.E. Karen, H. Matthew, M. Anthony, M. Frank, Direct reversible voltammetry and electrocatalysis with surface-stabilized Fe2O3 redox states. Electrochem. Commun. 10, 1773 (2008)

    Article  CAS  Google Scholar 

  36. T.R. Lin, L.S. Zhong, J. Wang, L.Q. Guo, H.Y. Wu, Q.Q. Guo, F.F. Fu, G.N. Chen, Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. Biosens. Bioelectron 59, 89 (2014)

    CAS  PubMed  Article  Google Scholar 

  37. Z. Zhao, Y. Ma, J. Fan, Y. Xue, H. Chang, Y. Masubuchi, S. Yin, Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities. J. Alloy. Compd. 735, 1297–1305 (2018)

    CAS  Article  Google Scholar 

  38. C. Prathapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswroop, D.M. Jnaneshwara, White light emitting magnesium aluminates nanophosphor near ultraviolet excited photoluminescence, photometric characteristics and its UV photo catalytic activity. J. Alloy. Compd. 728, 1124–1138 (2017)

    Article  CAS  Google Scholar 

  39. O. Stroyuk, O. Raievska, D.R.T. Zahn, Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Adv. 10, 34059–34087 (2020)

    CAS  PubMed  Article  Google Scholar 

  40. W. Zhang, D. Xu, F. Wang, M. Chen, Element-doped graphitic carbon nitride: confirmation of doped elements and applications. Nanoscale Adv. 3, 4370 (2021)

    CAS  Article  Google Scholar 

  41. X. Zhang, K. Li, Synthesis of porous graphitic carbon from biomass by one-step method and its role in the electrode for supercapacitor. J. Appl. Electrochem. 48, 415–426 (2018)

    CAS  Article  Google Scholar 

  42. Q. Liu, H. Tian, Z. Dai, H. Sun, J. Liu, S. Zhimin Ao, C. Wang, S.L. Han, Nitrogen-doped carbon nanospheres-modified graphitic carbon nitride with outstanding photocatalytic activity. Nano-Micro Lett. 12, 24 (2020)

    CAS  Article  Google Scholar 

  43. A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9, 47 (2017)

    CAS  Article  Google Scholar 

  44. X. Tan, L. Kou, H. Tahini, Conductive graphitic carbon nitride as an ideal material for electrocatalytically switchable CO2 capture. Sci Rep. 5, 17636 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. S.A. Shahamirifard, M. Ghaedi, A new electrochemical sensor for simultaneous determination of arbutin and vitamin C based on hydroxyapatite-ZnO-Pd nanoparticles modified carbon paste electrode. Biosens. Bioelectron 141, 111474 (2019)

    CAS  PubMed  Article  Google Scholar 

  46. H. Beitollahi, M. Safaei, M.R. Shishehbore, S. Tajik, Application of Fe3O4-SiO2/GO nanocomposite for sensitive and selective electrochemical sensing of tryptophan. J. Electrochem. Sci. Eng. 9, 45–53 (2019)

    CAS  Article  Google Scholar 

  47. R. Liu, X. Zeng, J. Liu, J. Luo, Y. Zheng, X. Liu, A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Microchim Acta 183(5), 1543–1551 (2016)

    CAS  Article  Google Scholar 

  48. A.A. Pasban, E.H. Nia, M. Piryaei, Determination of acetaminophen via TiO2/ MWCNT modified electrode. J. Nanoanalysis 4(2), 142–149 (2017)

    Google Scholar 

  49. S. Bonyadi, Kh. Ghanbari, M. Ghias, All-electrochemical synthesis of a three-dimensional mesoporous polymeric g-C3N4/PANI/ CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. New J. Chem. 44, 3412 (2020)

    CAS  Article  Google Scholar 

  50. A. Babaei, M. Afrasiabi, M. Babazadeh, A. Glassy, Carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis 22, 1743–1749 (2010)

    CAS  Article  Google Scholar 

  51. L. Fu, G. Lai, A. Yu, Preparation of b-cyclodextrin functionalized reduced graphene oxide: application for electrochemical determination of paracetamol. RSC Adv. 5, 76973 (2015)

    CAS  Article  Google Scholar 

  52. J. Wang, S. Liu, J. Luo, S. Hou, H. Song, Y. Niu, C. Zhang, Conductive metal-organic frameworks for amperometric sensing of paracetamol. Front. Chem. 8, 594093 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. D.M. Fernandes, N. Silva, C. Pereira, C. Moura, J.M.C.S. Magalhães, B. Bachiller-Baeza, I. Rodríguez-Ramos, A. Guerrero-Ruiz, C.D. Matos, C. Freire, MnFe2O4@CNT-N as novel electrochemical nano sensor for determination of caffeine, acetaminophen and ascorbic acid. Sensors Actuators B Chem 218, 128–136 (2015)

    CAS  Article  Google Scholar 

  54. S.H. Lee, J.H. Lee, V.K. Tran, E. Ko, C.H. Park, W.S. Chung, G.H. Seong, Determination of acetaminophen using functional paper-based electrochemical devices. Sensors Actuators B Chem. 232, 514–522 (2016)

    CAS  Article  Google Scholar 

  55. S. Menon, K.G. Kumar, Simultaneous Voltammetric determination of acetaminophen and its fatal counterpart Nimesulide by gold Nano/L-Cysteine modified gold electrode. J. Electrochem. Soc. 164, B482–B487 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support for this work, from the Deanship of Scientific research (DSR), University of Tabuk, Tabuk, Saudi Arabia, under Grant No. S-1442-0120

Funding

Funding for this research is received from DSR, University of Tabuk under Grant No. S-1442-0120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Khasim.

Ethics declarations

Conflict of interest

Authors listed in the manuscript certify that they have NO affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khasim, S., Almutairi, H.M., Eid Albalawi, S. et al. Graphitic Carbon Nitride Decorated with Iron Oxide Nanoparticles as a Novel High-Performance Biomimetic Electrochemical Sensing Platform for Paracetamol Detection. J Inorg Organomet Polym (2022). https://doi.org/10.1007/s10904-022-02334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-022-02334-9

Keywords

  • Graphitic carbon nitride
  • Iron oxide nanoparticles
  • EIS studies
  • Electrochemical sensor
  • Paracetamol detection