Skip to main content
Log in

Synthesis of Reduced Graphene Oxide/Copper Tin Sulfide (Cu2SnS3) Composite for the Photocatalytic Degradation of Tetracycline

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO)-copper tin sulfide (Cu2SnS3), (rGO-CTS), composites were successfully synthesized through a facile ex-situ process and the obtained composites were utilized as photocatalysts for the degradation of tetracycline (TCE) under a UV-LED irradiation. Physicochemical and morphological characterization of the composites confirmed the incorporation of CTS unto rGO. The optical study of the composites, using absorption spectroscopy, showed a red shift to lower energy with increase in the percentage of rGO in the composites. This reduction in band gap suggests a possible enhancement in photocatalytic potency due to enhanced charge carrier generation. The photocatalytic degradation study showed an increase in TCE degradation with increase in rGO content of the composite. This enhanced photocatalytic activity could be ascribed to: (i) enhanced adsorption properties due to the increased presence of oxygenated functional groups on rGO, and (ii) increased charge carrier generation and separation due to modification of the band edge potentials of the composites by the incorporation of rGO. Radical scavenging studies of the degradation process showed that photogenerated holes played the most significant role in the degradation process. A plausible mechanism was proposed for the degradation process based on the radical scavenging experiment and charge carrier characteristics of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Kumar, K. Singh, M. Shah, Advanced Oxidation Processes for Complex Wastewater Treatment (Elsevier, New York, 2021), pp. 1–31

    Google Scholar 

  2. J.O. Tijani, O.O. Fatoba, G. Madzivire, L.F. Petrik, A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water Air Soil Pollut. 225, 2102 (2014)

    Article  CAS  Google Scholar 

  3. H. Liu, C. Wang, G. Wang, Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective. Chemistry 15, 3239–3253 (2020)

    CAS  Google Scholar 

  4. A. Tufail, W.E. Price, F.I. Hai, A critical review on advanced oxidation processes for the removal of trace organic contaminants: a voyage from individual to integrated processes. Chemosphere 260, 127460 (2020)

    Article  PubMed  CAS  Google Scholar 

  5. M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications a review. Crit. Rev. Environ. Sci. Technol. 44, 2577–2641 (2014)

    Article  CAS  Google Scholar 

  6. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep. 1, 167–176 (2015)

    Article  CAS  Google Scholar 

  7. S. Khan, M. Sayed, M. Sohail, L.A. Shah, M.A. Raja, Chapter 6—advanced oxidation and reduction processes, in Advances in Water Purification Techniques. ed. by S. Ahuja (Elsevier, 2019), pp. 135–164

    Chapter  Google Scholar 

  8. T. Li, C. Wang, T. Wang, L. Zhu, Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet. Appl. Catal. B 268, 118442 (2020)

    Article  CAS  Google Scholar 

  9. T. Xu, Y. Zhu, J. Duan, Y. Xia, T. Tong, L. Zhang, D. Zhao, Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: effectiveness, material synergy and roles of carbon. Chem. Eng. J. 395, 124991 (2020)

    Article  CAS  Google Scholar 

  10. V. Likodimos, Advanced photocatalytic materials. Materials (Basel) 13, 821 (2020)

    Article  Google Scholar 

  11. C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci. 7, 2831–2867 (2014)

    Article  CAS  Google Scholar 

  12. S. Kumar, W. Ahlawat, G. Bhanjana, S. Heydarifard, M. Nazhad, N. Dilbaghi, Nanotechnology-based water treatment strategies. J. Nanosci. Nanotechnol. 14, 1838–1858 (2014)

    Article  PubMed  CAS  Google Scholar 

  13. M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts. J. Saudi Chem. Soc. 19, 462–464 (2015)

    Article  Google Scholar 

  14. M.B. Tahir, M. Rafique, M.S. Rafique, N. Fatima, Z. Israr, Chapter 6—metal oxide- and metal sulfide-based nanomaterials as photocatalysts, in Nanotechnology and Photocatalysis for Environmental Applications. ed. by M.B. Tahir, M. Rafique, M.S. Rafique (Elsevier, 2020), pp. 77–96

    Chapter  Google Scholar 

  15. H. Hao, X. Lang, Metal sulfide photocatalysis: visible-light-induced organic transformations. ChemCatChem 11, 1378–1393 (2019)

    Article  CAS  Google Scholar 

  16. K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, P. Singh, Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J. Ind. Eng. Chem. 78 (2019).

  17. H. Kim, D. Jang, S. Choi, J. Kim, S. Park, Acid-activated carbon nitrides as photocatalysts for degrading organic pollutants under visible light. Chemosphere 273, 129731 (2021)

    Article  PubMed  CAS  Google Scholar 

  18. C.-H. Lai, M.-Y. Lu, L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22, 19–30 (2012)

    Article  CAS  Google Scholar 

  19. V. Robles, J.F. Trigo, C. Guillén, J. Herrero, Copper tin sulfide (CuxSnSy) thin films evaporated with x=3,4 atomic ratios: Influence of the substrate temperature and the subsequent annealing in sulfur. Mater. Res. Bull. 83, 116–121 (2016)

    Article  CAS  Google Scholar 

  20. A.C. Lokhande, P.T. Babar, V.C. Karade, M.G. Gang, V.C. Lokhande, C.D. Lokhande, J.H. Kim, The versatility of copper tin sulfide. J. Mater. Chem. A 7, 17118–17182 (2019)

    Article  CAS  Google Scholar 

  21. M.T.S. Nair, C. Lopz-Mata, O. GomezDaza, P.K. Nair, Copper tin sulfide semiconductor thin films produced by heating SnS–CuS layers deposited from chemical bath. Semicond. Sci. Technol. 18, 755–759 (2003)

    Article  CAS  Google Scholar 

  22. Q. Chen, D. Ma, Preparation of nanostructured Cu2SnS3 photocatalysts by solvothermal method. Int. J. Photoenergy 2013 (2013).

  23. X. Liang, Q. Cai, W. Xiang, Z. Chen, J. Zhong, Y. Wang, M. Shao, Z. Li, Preparation and characterization of flower-like Cu2SnS3 nanostructures by solvothermal route. J. Mater. Sci. Technol. 29, 231–236 (2013)

    Article  CAS  Google Scholar 

  24. J. Chang, E.R. Waclawik, Controlled synthesis of CuInS2, Cu2 SnS3 and Cu2 ZnSnS4 nano-structures: insight into the universal phase-selectivity mechanism. CrystEngComm 15, 5612–5619 (2013)

    Article  CAS  Google Scholar 

  25. J. Park, M. Song, W.M. Jung, W.Y. Lee, H. Kim, Y. Kim, C. Hwang, I.-W. Shim, Syntheses of Cu2SnS3 and Cu2 ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions. Dalton Trans. 42, 10545–10550 (2013)

    Article  PubMed  CAS  Google Scholar 

  26. W. Wang, H. Shen, J. Li, Rapid synthesis of hollow CTS nanoparticles using microwave irradiation. Mater. Lett. 111, 5–8 (2013)

    Article  CAS  Google Scholar 

  27. M. Bouaziz, M. Amlouk, S. Belgacem, Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films 517, 2527–2530 (2009)

    Article  CAS  Google Scholar 

  28. A.C. Lokhande, A. Shelke, P.T. Babar, J. Kim, D.J. Lee, I.-C. Kim, C.D. Lokhande, J.H. Kim, Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles. RSC Adv. 7, 33737–33744 (2017)

    Article  CAS  Google Scholar 

  29. M. Kamalanathan, S. Hussain, R. Gopalakrishnan, Influence of solvents on solvothermal synthesis of Cu2SnS3 nanoparticles with enhanced optical, photoconductive and electrical properties. Mater. Technol. 33, 72–78 (2018)

    Article  CAS  Google Scholar 

  30. H. Lu, D.S. Wright, S.D. Pike, The use of mixed-metal single source precursors for the synthesis of complex metal oxides. Chem. Commun. (Camb) 56, 854–871 (2020)

    Article  CAS  Google Scholar 

  31. H.-C. Tao, S.-C. Zhu, X.-L. Yang, L.-L. Zhang, S.-B. Ni, Reduced graphene oxide decorated ternary Cu2SnS3 as anode materials for lithium ion batteries. J. Electroanal. Chem. 760, 127–134 (2016)

    Article  CAS  Google Scholar 

  32. X. Chen, J. Lin, Y. Chen, J. Zhang, H. Jiang, F. Qiu, R. Chu, H. Guo, Binder-free and self-supported reduced graphene oxide coated Cu2SnS3/Carbon nanofibers for superior lithium storage. J. Alloys Compd. 842, 155619 (2020)

    Article  CAS  Google Scholar 

  33. Y. Han, Y. Yang, J. Zhao, X. Yin, W. Que, Facile one-pot synthesis of ternary copper-tin-chalcogenide quantum dots on reduced graphene oxide for enhanced photocatalytic activity. Catal. Lett. 148, 3112–3118 (2018)

    Article  CAS  Google Scholar 

  34. J. Xu, R. Wang, X. Chen, R. Zhou, J. Zhang, Cu2SnS3 nanocrystals decorated rGO nanosheets towards efficient and stable hydrogen evolution reaction in both acid and alkaline solutions. Mater. Today Energy 17, 100435 (2020)

    Article  Google Scholar 

  35. M.P. Motaung, J. Osuntokun, D.C. Onwudiwe, The heat-up synthesis of monodispersed Bi2S3 and Cu7S4 nanoparticles from novel precursor complexes and their characterizations. Mater. Sci. Semicond. Process. 99, 92–98 (2019)

    Article  CAS  Google Scholar 

  36. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  PubMed  CAS  Google Scholar 

  37. T. Som, G.V. Troppenz, R.R. Wendt, M. Wollgarten, J. Rappich, F. Emmerling, K. Rademann, Graphene oxide/α-Bi2O3 composites for visible-light photocatalysis, chemical catalysis, and solar energy conversion. Chemsuschem 7, 854–865 (2014)

    Article  PubMed  CAS  Google Scholar 

  38. R. Bhargava, S. Khan, Enhanced optical properties of Cu2O anchored on reduced graphene oxide (rGO) sheets. J. Phys. Condens. Matter. 30, 335703 (2018)

    Article  PubMed  Google Scholar 

  39. J.-W. Yun, K.Y. Ryu, T.K. Nguyen, F. Ullah, Y.C. Park, Y.S. Kim, Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities. RSC Adv. 7, 6202–6208 (2017)

    Article  CAS  Google Scholar 

  40. M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 11, 86–102 (2018)

    Article  CAS  Google Scholar 

  41. Q. Wu, M. Zhou, Y. Gong, Q. Li, M. Yang, Q. Yang, Z. Zhang, Three-dimensional bandgap-tuned Ag2S quantum dots/reduced graphene oxide composites with enhanced adsorption and photocatalysis under visible light. Catal Sci Technol 8, 5225–5235 (2018)

    Article  CAS  Google Scholar 

  42. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006)

    Article  CAS  Google Scholar 

  43. M. Bodzek, M. Rajca, Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds/Fotokataliza w oczyszczaniu i dezynfekcji wody cz \ i. podstawy teoretyczne (2012)

  44. X. Wang, K. Li, J. He, J. Yang, F. Dong, W. Mai, M. Zhu, Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy 78, 105388 (2020)

    Article  CAS  Google Scholar 

  45. X.-F. Zhang, Q. Xi, A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation. Carbon 49, 3842–3850 (2011)

    Article  CAS  Google Scholar 

  46. P.N.O. Gillespie, N. Martsinovich, Origin of charge trapping in TiO2/reduced graphene oxide photocatalytic composites: insights from theory. ACS Appl. Mater. Interfaces 11, 31909–31922 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. K. Fatima, N. Masood, S. Luqman, Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy. Biomed. Res. Therapy 3 (2016).

  48. H. Wang, W. Liu, X. He, P. Zhang, X. Zhang, Y. Xie, An Excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 142, 14007–14022 (2020)

    Article  PubMed  CAS  Google Scholar 

  49. H.M. Jaeger, S. Fischer, O.V. Prezhdo, The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. J. Chem. Phys. 136, 064701 (2012)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr Innocent Shuro of the Laboratory for Electron Microscopy (LEM), CRB, for SEM and TEM analysis.

Funding

Authours acknowledge the North-West University, South African and National Research Foundation (NRF) South Africa for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C. Onwudiwe.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olatunde, O.C., Onwudiwe, D.C. Synthesis of Reduced Graphene Oxide/Copper Tin Sulfide (Cu2SnS3) Composite for the Photocatalytic Degradation of Tetracycline. J Inorg Organomet Polym 32, 2578–2590 (2022). https://doi.org/10.1007/s10904-022-02308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02308-x

Keywords

Navigation