Skip to main content

Advertisement

Log in

Supramolecular Self-Assembly Built by Hydrogen, Stacking and Br···Br Interactions in 4-((4-Bromobenzyl)Selanyl)Aniline: Structure, Hirshfeld Surface Analysis, 3D Energy Framework Approach and Global Reactivity Descriptors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A novel organoselenium compound named 4-((4-bromobenzyl)selanyl)aniline, C13H12BrNSe, (A), was synthesized via reduction of 4,4′-(1,2-diselandiyl)dianiline with sodium borohydride (NaBH4) and subsequent nucleophilic substitution (SN) reaction with 4-((4-bromobenzyl)selanyl)aniline. The single crystal X-Ray Diffraction result indicates that organoselenide (A) crystallizes in monoclinic P21/c space group with unit cell parameters a = 14.2897 (13) Å, b = 5.4068 (4) Å, c = 16.2386 (14) Å, V = 1242.81 (18) Å3 and Z = 4. The molecular packing is stabilized by N/C-H···Br and N–H···Se hydrogen bonds, Br···Br interactions, C–H···π, stacking interactions. Hirshfeld surface analysis allowed for better visualization and easier analysis of intermolecular interaction. The two-dimensional fingerprint revealed that the uppermost contributions to these surfaces come from H···H (38%), C···H (27.7%), Br···H (17.7%) and Se···H (8.1%) interactions. The intermolecular interactions energies in organoselenide (A) were calculated using B3LYP/6-31G(p,d) and B3LYP/6-311G(p,d) energy models. It reveals that the dispersion energy (Edis = -184.4 kJ/mol) contribution is preponderant over the electrostatic energy (Eele = -75.9 and 88.4 kJ/mol) contribution. The theoretical calculations were carried out using the DFT method to assess the molecular, frontier molecular orbitals, and global reactivity descriptors. The charge distribution in organoselenide (A) is visualized using molecular electrostatic potential surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Agnieszka, A. Wilkaniec, A. Adamczyk, Curr. Neuropharmacol. 14(3), 282–299 (2016)

    Article  Google Scholar 

  2. O.M. Guillin et al., Nutrients 11(9), 2101 (2019)

    Article  CAS  Google Scholar 

  3. F.F. El-Senduny, S.M. Shabana, D. Rösel, J. Brabek, I. Althagafi, G. Angeloni, G. Manolikakes, S. Shaaban, Future. Med. Chem. 13(19), 1655–1677 (2021)

    CAS  Google Scholar 

  4. S. Shaaban, S.M. Shabana, Y.S. Al-Faiyz, G. Manolikakes, F.F. El-Senduny, Bioorgan Chem. 109, 104713 (2021)

    Article  CAS  Google Scholar 

  5. S. Shaaban, A. Zarrouk, D. Vervandier-Fasseur, Y.S. Al-Faiyz, H. El-Sawy, I. Althagafi, P. Andreoletti, M. Cherkaoui-Malki, Arab J Chem. 14(4), 103051 (2021)

    Article  CAS  Google Scholar 

  6. S. Shaaban, A.A. Mahmoud, W.S. Hamama. (2014).https://doi.org/10.3998/ark.5550190.p008.763.

  7. M. Govindasamy, W.-W. du Mont, H. Sies, Chem. Rev. 101(7), 2125–2180 (2001)

    Article  Google Scholar 

  8. H. Steinbrenner, B. Speckmann, L.-O. Klotz, Arch. Biochem. Biophys. (2016). https://doi.org/10.1016/j.abb.2015.06.024

    Article  PubMed  Google Scholar 

  9. L. Calle, Y. Marrero-Ponce, J.R. Mora, Mol. Simul. (2021). https://doi.org/10.1080/08927022.2021.1975039

    Article  Google Scholar 

  10. S. Shaaban, A.M. Ashmawy, A. Negm, L.A. Wessjohann, Eur. J. Med. Chem. (2019). https://doi.org/10.1016/j.ejmech.2019.06.075

    Article  PubMed  Google Scholar 

  11. E.J. Lenardão, C. Santi, L. Sancineto, New frontiers in organoselenium compounds (Springer, Switzerland, 2018)

    Book  Google Scholar 

  12. J. Zhang, L. Yang, Y. Wang, T. Cao, Z. Sun, J. Xu, Y. Liu, G. Chen, ACS Appl. Biomater. (2021). https://doi.org/10.1021/acsabm.0c01561

    Article  Google Scholar 

  13. S. Shaaban, A. Negm, A.M. Ashmawy, D.M. Ahmed, L.A. Wessjohann, Eur. J. Med. Chem. (2016). https://doi.org/10.1016/j.ejmech.2016.06.005

    Article  PubMed  Google Scholar 

  14. S. Shaaban, D.V. Fasseur, P. Andreoletti, A. Zarrouk, P. Richard, A. Negm, G. Manolikakes, C. Jacob, M. Cherkaoui-Malki, Bioorgan. Chem. (2018). https://doi.org/10.1016/j.bioorg.2018.05.019

    Article  Google Scholar 

  15. L. Wang, Z. Yang, J. Fu, H. Yin, K. Xiong, Q. Tan, H. Jin et al., Free Radical Biol. Med. (2012). https://doi.org/10.1016/j.freeradbiomed.2011.11.034

    Article  Google Scholar 

  16. G.N. Schrauzer, J. Nutr. 130(7), 1653–1656 (2000)

    Article  CAS  Google Scholar 

  17. S.-F. Ye, Y. Yang, L. Wu, W.-W. Ma, H.-H. Zeng, J. Zhejiang Univ-Sci B. 18(5), 373–382 (2017)

    Article  CAS  Google Scholar 

  18. M. Baarine, P. Andreoletti, A. Athias, T. Nury, A. Zarrouk, K. Ragot, A. Vejux et al., Neuroscience 213, 1–18 (2012)

    Article  CAS  Google Scholar 

  19. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. 42, 339–341 (2009)

    Article  CAS  Google Scholar 

  20. G.M. Sheldrick, Acta Cryst. A71, 3–8 (2015)

    Google Scholar 

  21. K. Brandenburg, DIAMOND. Crystal Impact, GbR. Bonn, Germany, (2008)

  22. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, revision B.04, (Gaussian Inc, Pittsburgh, 2003)

  23. J.M. Campanario, E. Bronchalo, M.A. Hidalgo, An effective approach for teaching intermolecular interactions. J. Chem. Educ 71, 761–766 (1994)

    Article  CAS  Google Scholar 

  24. B.K. Shukla, U. Yadava, M.R. Choudhury, J. Mol. Liq. (2015). https://doi.org/10.1016/j.molliq.2015.09.021

    Article  Google Scholar 

  25. M.A. Spackman, D. Jayatilaka, Cryst Eng Comm. 11, 19–32 (2009)

    Article  CAS  Google Scholar 

  26. M. J. Turner, J. J. McKinnon, S. K. Wolff, S. K. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Crystal Explorer 17.5. (University of Western Australia, 2017)

  27. J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Chem. Commun. 11, 3814–3816 (2007)

    Article  Google Scholar 

  28. J.C. Bronte, J.S. Ritch, Acta Cryst. (2015). https://doi.org/10.1107/S205698901500345X

    Article  Google Scholar 

  29. H. Bouraoui, A. Boudjada, N. Hamdouni, Y. Mechehoud, J. Meinnel, Acta Cryst. (2015). https://doi.org/10.1107/S2056989015019969

    Article  Google Scholar 

  30. P. Metrangolo, G. Resnati, IUCrJ 1, 5–7 (2014)

    Article  CAS  Google Scholar 

  31. G. Berger, J. Soubhye, R. Wintjens, K. Robeyns, F. Meyer, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 74, 618–627 (2018)

    Article  CAS  Google Scholar 

  32. F.F. Awwadi, R.D. Willett, K.A. Peterson, B. Twamley, Chem. Eur. J. 12, 8952–8960 (2006)

    Article  CAS  Google Scholar 

  33. Y.P. Nizhnik, A. Sons, M. Zeller, S.V. Rosokha, Cryst. Growth Des. 18, 1198 (2018)

    Article  CAS  Google Scholar 

  34. A. Bondi, J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  35. S.L. Tan, M.M. Jotani, E.R.T. Tiekink, Acta Crystallogr. E Crystallogr. Commun. (2019). https://doi.org/10.1107/S2056989019001129

    Article  PubMed  PubMed Central  Google Scholar 

  36. L. Chęcińska, A. Jóźwiak, M. Ciechańska, C. Paulmann, J.J. Holstein, B. Dittrich, M. Małecka, Z. Kristallogr. 233(9–10), 675–687 (2018)

    Article  Google Scholar 

  37. P. Politzer, J.S. Murray, Theor. Chimi. Acta. 108, 134–142 (2002)

    Article  CAS  Google Scholar 

  38. T.A. Yousef, J. Mol. Struct. 1215, 128180 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group no. RG-21-09-68.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SS, HF, TY and MAM. The first draft of the manuscript was written by SS, HF and TY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hela Ferjani.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, S., Ferjani, H., Yousef, T. et al. Supramolecular Self-Assembly Built by Hydrogen, Stacking and Br···Br Interactions in 4-((4-Bromobenzyl)Selanyl)Aniline: Structure, Hirshfeld Surface Analysis, 3D Energy Framework Approach and Global Reactivity Descriptors. J Inorg Organomet Polym 32, 1878–1890 (2022). https://doi.org/10.1007/s10904-022-02284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02284-2

Keywords

Navigation