Skip to main content
Log in

Structural, Optical, Magnetic and Photon Attenuation of Novel Potassium Lead Borate Glasses Doped with MnO

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Potassium lead borate glasses doped with MnO (40B2O3 + 40PbO + (20-x)K2O + xMnO: x = 0–5 mol%) have been prepared via standard melting quenching process. The impact of MnO on the structure, optical, magnetic and gamma-ray protection properties of pottisium lead borate glasses have been examined. The density was increased from 4.83to 5.23 g/cm3 as MnO content increased while the molar volume of prepared glass sample was decreased from 28.112 to 25.755 cm3/mol. The obtained direct optical gap (Eg) values were 2.84, 2.59, 2.41, 2.19, 1.95, and 1.84 eV for the Mn-x (x = 0, 1, 2, 3, 4, and 5) glass samples, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra demonstrated that as the MnO concentration increases in the glass network the intensity and width of the IR bands were increased. The magnetic measurement revealed that the magnetic saturation (Ms) was decreased while the magnetic coercivity (Hc) was increased with increasing MnO substitution ratio. The linear attenuation coefficient of the \({\mu }_{Mn-glass}\) follows the order: µMn-0 < µMn-1 < µMn-2 < µMn-3 < µMn-4 < µMn-5. Half value layer (HVL) rises as µ decreases and vice versa. The range of the HVL is 0.002–3.378, 0.002–3.334, 0.002–3.291, 0.002–3.248, 0.002–3.176, and 0.002–3.106 cm for Mn-x (x = 0, 1, 2, 3, 4, and5). The trend of effective atomic number (Zeff) variation is related to that of both linear and mass attenuation coefficients (µ and µm). The produced Mn-glasses can be employed in a variety of optical, magnetic and radiation protective applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.P. Bansal, R.H. Doremus, “Handbook of Glass Properties”, Academic Press, 1986.

  2. M.I. Sayyed, Y. Al-Hadeethi, Maha M. AlShammari, Moustafa Ahmed, Saleh H. Al-Heniti, Y.S. Rammah (2021) Ceram. Int. 47: 611–618.

  3. A.M. Abdelghany, M.A. Ouis, M.A. Azooz, H.A. EllBatal, Defect formation of gamma irradiated MoO3-doped borophosphate glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 569–574 (2013)

    Article  CAS  Google Scholar 

  4. H. Wen, P.A. Tanner, Optical properties of 3d transition metal ion doped sodium borosilicate glass. J. Alloys Compd. 625, 328–335 (2015)

    Article  CAS  Google Scholar 

  5. A.M. Abdelghany, Y.S. Rammah, J. Inorg. Organomet. Polym Mater. 31, 2560–2568 (2021)

    Article  CAS  Google Scholar 

  6. Y. Al-Hadeethi, M.I. Sayyed, Bahaaudin M. Raffah, E. Bekyarova, Y.S. Rammah, Ceramics International 47 (2021) 3421–3429.

  7. A.S. Abouhaswa, Gamal M. Turky, Y.S. Rammah, J. Mater. Sci.: Mater. Electron 31 (2020) 17044–17054.

  8. H.O. Tekin, Shams A.M. Issa, Emad M. Ahmed, Y.S. Rammah, Lithium-fluoro borotellurite glasses: Nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics, Radiation Physics and Chemistry 190 (2022) 109819.

  9. Atif Mossad Ali, Y.S. Rammah, M. I. Sayyed, H. H. Somaily, H. Algarni, M. Rashad (2020) Applied Physics A 126:280.

  10. A. Bhogi, P. Kistaiah, Structural and optical properties of CuO doped lithium borate glasses. J. Phy. Chem. Glasses 56, 197–202 (2015)

    Google Scholar 

  11. S.P.H.S. Hashim, H.A.A. Sidek, M.K. Halimah, K.A. Matori, W.M.D.W. Yusof, M.H.M. Zaid, The effect of remelting on the physical properties of borotellurite glass doped with manganese. Int. J. Mol. Sci. 14, 1022–1030 (2013)

    Article  CAS  Google Scholar 

  12. T. Satyanarayana, M.A. Valente, G. Nagarjuna, N. Veeraiah, Spectroscopic features of manganese doped tellurite borate glass ceramics. J. Phys. Chem. Solids 74, 229–235 (2013)

    Article  CAS  Google Scholar 

  13. A. Terczynska-Madej, K. Cholewa-Kowalska, M. Laczka, The effect of silicate network modifiers on color and electron spectra of transition metal ions. Opt. Mater. 32, 1456–1462 (2010)

    Article  CAS  Google Scholar 

  14. P.V. Reddy, C.L. Kanth, V.P. Kumar, N. Veeraiah, P. Kistaiah, Optical and thermoluminescence properties of R2O-RF-B2O3 glass system doped with MnO. J. Non-Cryst. Solids 351, 3752–3759 (2005)

    Article  CAS  Google Scholar 

  15. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, El Sayed Yousef, The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics. Ceram. Int. 47, 2547–2556 (2020)

    Article  Google Scholar 

  16. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, El Sayed Yousef, The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications. Ceram. Int. 46, 27163–27174 (2020)

    Article  CAS  Google Scholar 

  17. Y.S. Rammah, A. Askin, A.S. Abouhaswa, F.I. El-Agawany, M.I. Sayyed, Synthesis, physical, structural and shielding properties of newly developed B2O3 –ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Appl. Phys. A 125, 523 (2019)

    Article  CAS  Google Scholar 

  18. M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3 –Bi2O3 –PbO–TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019)

    Article  CAS  Google Scholar 

  19. M.I. Sayyed, Y.S. Rammah, A.S. Abouhaswa, H.O. Tekin, B.O. Elbashir, ZnO-B2O3 -PbO glasses: synthesis and radiation shielding characterization. Phys. B. Phys. Condens. Matter 548, 20–26 (2018)

    Article  CAS  Google Scholar 

  20. H.H. Hegazy, M.S. Al-Buriahi, Faisal Alresheedi, F.I. El-Agawany, Chahkrit Sriwunkum, R. Neffati, Y.S. Rammah, Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: Theoretical and simulation studies, Ceramics International 47 (2021) 2772–2780.

  21. E. Şakar, E., Ö. F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiation Physics and Chemistry 166 (2020) 108496.

  22. M. Farouk, A. Samir, F. Metawe, M. Elokr, Optical absorption and structural studies of bismuth borate glasses containing Er3+ ions, J. Non-Cryst. Solids 371–372: 14-21

  23. M. Bosca, L. Pop, G. Borodi, P. Pascuta, E. Culea, XRD and FTIR structural investigations of erbium-doped bismuth-lead-silver glasses and glass ceramics. J. Alloy. Comp. 479, 579–582 (2009)

    Article  CAS  Google Scholar 

  24. S. Gu, Z. Wang, S. Jiang, H. Lin, Influences of Fe2O3 on the structure and properties of Bi2O3-B2O3-SiO2 low-melting glasses. Ceram. Int. 40, 7643–7645 (2014)

    Article  CAS  Google Scholar 

  25. M. Pal, B. Roy, M. Pal, Structural characterization of borate glasses containing zinc and manganese oxides. J. Mod. Phys. 2(9), 1062 (2011)

    Article  CAS  Google Scholar 

  26. C. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram. 2012, 17 (2012)

    Google Scholar 

  27. P.V. Rao, G.N. Raju, P.S. Prasad, C. Laxmikanth, N. Veeraiah, Transport and spectroscopic properties of nickel ions in ZnO-B2O3-P2O5 glass system, Opt. - Int. J. Light Electron Opt 127, 54–57 (2015)

  28. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569 (1972)

    Article  Google Scholar 

  29. M.S. Sadeq, H.Y. Morshidy, Effect of samarium oxide on structural, optical and electrical properties of some alumino-borate glasses with constant copper chloride. J. Rare Earths 38, 770–775 (2020)

    Article  CAS  Google Scholar 

  30. A.A. El-Daly, M.A. Abdo, H.A. Bakr, M.S. Sadeq, Impact of cobalt ions on the phonon energy and ligand field parameters of some borate glasses, J. Non-Cryst. Solids, 555, 120535 (2021)

  31. A. Samir, M.A. Hassan, A. Abokhadra, L.I. Soliman, M. Elokr, Characterization of borate glasses doped with copper oxide for optical application. Opt. Quantum Electron. 51, 123 (2019)

    Article  Google Scholar 

  32. A. Okasha, S.Y. Marzouk, A.M. Abdelghany, Design a tunable glasses optical filters using CuO doped fluoroborate glasses, Opt. Laser Technol. 137, 106829 (2021)

  33. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic Absorption of Solids [8]. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  34. H. Yangy, Z. Wangy, L. Songy, M. Zhao, J. Wang, H. Luo study on the coercivity and the magnetic anisotropy of the lithium ferrite nanocrystallite, J. Phys. D: Appl. Phys.29 (1996) 2574

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Abouhaswa.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouhaswa, A.S., Rammah, Y.S. Structural, Optical, Magnetic and Photon Attenuation of Novel Potassium Lead Borate Glasses Doped with MnO. J Inorg Organomet Polym 32, 2113–2122 (2022). https://doi.org/10.1007/s10904-022-02272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02272-6

Keywords

Navigation