Skip to main content

Advertisement

Log in

Compositional Adjusting and Antibacterial Improvement of Hydroxyapatite/Nb2O5/Graphene Oxide for Medical Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAP), niobium pentoxide (Nb2O5), and graphene oxide are suggested to be used for biomaterial applications. They were fabricated in one ternary nanocomposite (TNC). The multifunctionality includes antibacterial activity and biocompatible properties are exhibited in TNC. In addition, the structural patterns were estimated by X-ray diffraction. Further, the surface morphology investigation was done by the scanning electron microscope in addition to the transmittance electron microscope. The nanorods of HAP were detected with dimensions around 9.5 and 29.5 nm for diameter and length, respectively. Moreover, spherical particles showed a diameter reached around 104 nm. The roughness (Ra) increased from 3.5 to 9.1 nm. Furthermore, the biocompatibility which is represented in the cell viability % increased from 96.8 ± 2 to 97.8 ± 4% from pure HAP to TNC. In this regard, the experiments were done in vitro towards osteoblast cell lines. Further, the antibacterial properties were indicated from the inhibition zones in (mm). The inhibition zone of E. coli and S. aureus reached 14.2 ± 1.2 mm and 13.9 ± 1.1 mm respectively. The enhancement in biological response can indicate the applicability of these compositions to be suggested for biomedical usages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Kuźnik, A. Październiok-Holewa, P. Jewula, N. Kuźnik, Bisphosphonates—much more than only drugs for bone diseases. Eur. J. Pharmacol. 866, 172773 (2020)

    Article  PubMed  CAS  Google Scholar 

  2. M.J. Hossan, M. Gafur, M. Karim, A. Rana, Mechanical properties of gelatin hydroxyapatite composite for bone tissue engineering. Bangladesh J. Sci. Ind. Res. 50, 15–20 (2015)

    Article  CAS  Google Scholar 

  3. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 7591–7621 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. M.R. Appleford, S. Oh, N. Oh, J.L. Ong, In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J. Biomed. Mater. Res. A 89, 1019–1027 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. S.V. Dorozhkin, Calcium orthophosphate bioceramics. Ceram. Int. 41, 13913–13966 (2015)

    Article  CAS  Google Scholar 

  6. S.V. Dorozhkin, Medical application of calcium orthophosphate bioceramics. Bio 1, 1–51 (2011)

    Article  Google Scholar 

  7. J.-P. Lafon, E. Champion, D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca10–x (PO4) 6–x (CO3) x (OH) 2–x–2y (CO3) y ceramics with controlled composition. J. Eur. Ceram. Soc. 28, 139–147 (2008)

    Article  CAS  Google Scholar 

  8. S. Samavedi, A.R. Whittington, A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 9, 8037–8045 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. A. Sugawara, K. Asaoka, S.-J. Ding, Calcium phosphate-based cements: clinical needs and recent progress. J. Mater. Chem. B 1, 1081–1089 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. A. Janković, S. Eraković, M. Mitrić, I.Z. Matić, Z.D. Juranić, G.C. Tsui et al., Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J. Alloys Compd. 624, 148–157 (2015)

    Article  CAS  Google Scholar 

  11. S. Erakovic, A. Jankovic, D. Veljović, E. Palcevskis, M. Mitrić, T. Stevanovic et al., Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. J. Phys. Chem. B 117, 1633–1643 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. J. Venkatesan, S.-K. Kim, Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J. Biomed. Nanotechnol. 10, 3124–3140 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. B.-S. Kim, H.J. Kang, S.-S. Yang, J. Lee, Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomed. Mater. 9, 025004 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. E. Havice, M. Marschke, P. Vandergeest, Industrial seafood systems in the immobilizing COVID-19 moment. Agric. Hum. Values 37, 655–656 (2020)

    Article  Google Scholar 

  15. M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, R. Hussain, Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49, 1461–1475 (2014)

    Article  CAS  Google Scholar 

  16. P. Teo, H. Lim, N. Huang, C. Chia, I. Harrison, Room temperature in situ chemical synthesis of Fe3O4/graphene. Ceram. Int. 38, 6411–6416 (2012)

    Article  CAS  Google Scholar 

  17. C. Shuai, W. Yang, P. Feng, S. Peng, H. Pan, Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioactive Mater. 6, 490–502 (2021)

    Article  CAS  Google Scholar 

  18. J. Jyoti, A. Kiran, M. Sandhu, A. Kumar, B.P. Singh, N. Kumar, Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect. J. Mech. Behav. Biomed. Mater. 117, 104376 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. M. Kaviya, P. Ramakrishnan, S.B. Mohamed, R. Ramakrishnan, J. Gimbun, K.M. Veerabadran et al., Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater. Today 36, 204–207 (2020)

    Google Scholar 

  20. S.M. Zebarjad, S.T. Ebrahimi, A study on mechanical properties of PMMA/hydroxyapatite nanocomposite. Engineering (2011). https://doi.org/10.4236/eng.2011.38096

    Article  Google Scholar 

  21. M. Aminzare, A. Eskandari, M. Baroonian, A. Berenov, Z.R. Hesabi, M. Taheri et al., Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceram. Int. 39, 2197–2206 (2013)

    Article  CAS  Google Scholar 

  22. Z. Ni, X. Gu, Y. He, Z. Wang, X. Zou, Y. Zhao et al., Synthesis of silver nanoparticle-decorated hydroxyapatite (HA@ Ag) poriferous nanocomposites and the study of their antibacterial activities. RSC Adv. 8, 41722–41730 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Beyene, R. Ghosh, Effect of zinc oxide addition on antimicrobial and antibiofilm activity of hydroxyapatite: a potential nanocomposite for biomedical applications. Mater. Today Commun. 21, 100612 (2019)

    Article  CAS  Google Scholar 

  24. R. Elliott, Columbium-oxygen system. Trans. Am. Soc. Metals 1960, 52 (1960)

    Google Scholar 

  25. M. Graça, A. Meireles, C. Nico, M. Valente, Nb2O5 nanosize powders prepared by sol–gel–Structure, morphology and dielectric properties. J. Alloys Compd. 553, 177–182 (2013)

    Article  CAS  Google Scholar 

  26. M. Tamai, K. Isama, R. Nakaoka, T. Tsuchiya, Synthesis of a novel b-tricalcium phosphate/hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties. J. Artif. Organs 10, 22–28 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. P. Wei, J. Fang, L. Fang, K. Wang, X. Lu, F. Ren, Novel niobium and silver toughened hydroxyapatite nanocomposites with enhanced mechanical and biological properties for load-bearing bone implants. Appl. Mater. Today 15, 531–542 (2019)

    Article  Google Scholar 

  28. R.L. Karlinsey, A.T. Hara, K. Yi, C.W. Duhn, Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas. Biomed. Mater. 1, 16 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. P. Bergschmidt, R. Bader, S. Finze, C. Schulze, G. Kundt, W. Mittelmeier, Comparative study of clinical and radiological outcomes of unconstrained bicondylar total knee endoprostheses with anti-allergic coating. Open Orthop. J. 5, 354 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  30. H.H. Beherei, A.A. Shaltout, M. Mabrouk, N.A. Abdelwahed, D.B. Das, Influence of niobium pentoxide particulates on the properties of brushite/gelatin/alginate membranes. J. Pharm. Sci. 107, 1361–1371 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. N.H. Marins, B.E. Lee, R.M. e Silva, A. Raghavan, N.L.V. Carreño, K. Grandfield, Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids Surf., B 182, 110386 (2019)

    Article  CAS  Google Scholar 

  32. H. Mohammed, A. Kumar, E. Bekyarova, Y. Al-Hadeethi, X. Zhang, M. Chen et al., Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. a scope review. Front. Bioeng. Biotechnol. 8, 465 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  33. K. Jalaja, V. Sreehari, P.A. Kumar, R.J. Nirmala, Graphene oxide decorated electrospun gelatin nanofibers: fabrication, properties and applications. Mater. Sci. Eng. 64, 11–19 (2016)

    Article  CAS  Google Scholar 

  34. İ Duru, D. Ege, A.R. Kamali, Graphene oxides for removal of heavy and precious metals from wastewater. J. Mater. Sci. 51, 6097–6116 (2016)

    Article  CAS  Google Scholar 

  35. C. Shuai, B. Peng, P. Feng, L. Yu, R. Lai, A. Min, In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J. Adv. Res. 35, 13 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. C. Wan, M. Frydrych, B. Chen, Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter. 7, 6159–6166 (2011)

    Article  CAS  Google Scholar 

  37. A.K. Geim, K.S. Novoselov, The rise of graphene. Nanoscience and technology: a collection of reviews from nature journals (World Scientific, Singapore, 2010), pp. 11–19

    Google Scholar 

  38. E. Nishida, H. Miyaji, H. Takita, I. Kanayama, M. Tsuji, T. Akasaka et al., Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Jpn. J. Appl. Phys. 53, 06JD4 (2014)

    Google Scholar 

  39. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo et al., Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 1–8 (2011)

    Google Scholar 

  40. W. Shao, X. Liu, H. Min, G. Dong, Q. Feng, S. Zuo, Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 7, 6966–6973 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. T. Forati, M. Atai, A. Rashidi, M. Imani, A. Behnamghader, Physical and mechanical properties of graphene oxide/polyethersulfone nanocomposites. Polym. Adv. Technol. 25, 322–328 (2014)

    Article  CAS  Google Scholar 

  42. H. Zhou, Y. Liu, W. Chi, C. Yu, Y. Yu, Preparation and antibacterial properties of Ag@polydopamine/graphene oxide sheet nanocomposite. Appl. Surf. Sci. 282, 181–185 (2013)

    Article  CAS  Google Scholar 

  43. Y. Zhang, H. Ruan, C. Guo, J. Liao, J. Shen, C. Gao, Thin-film nanocomposite reverse osmosis membranes with enhanced antibacterial resistance by incorporating p-aminophenol-modified graphene oxide. Sep. Purif. Technol. 234, 116017 (2020)

    Article  CAS  Google Scholar 

  44. M. Afifi, M.K. Ahmed, H.A. Ibrahium, N.S. Awwad, E. Abdel-Fattah, M.Y. Alshahrani, Improvement of physicochemical properties of ternary nanocomposites based on hydroxyapatite/CuO/graphene oxide for biomedical usages. Ceram. Int. 48, 3993–4004 (2022)

    Article  CAS  Google Scholar 

  45. H.A. Radwan, R.A. Ismail, S.A. Abdelaal, B.A. Al Jahdaly, A. Almahri, M.K. Ahmed et al., Electrospun polycaprolactone nanofibrous webs containing Cu–magnetite/graphene oxide for cell viability, antibacterial performance, and dye decolorization from aqueous solutions. Arab. J. Sci. Eng. 47, 303 (2021)

    Article  CAS  Google Scholar 

  46. A.M. Fathi, M.K. Ahmed, M. Afifi, A.A. Menazea, V. Uskokovic, Taking Hydroxyapatite-Coated Titanium Implants Two Steps Forward: Surface Modification Using Graphene Mesolayers and a Hydroxyapatite-Reinforced Polymeric Scaffold. ACS Biomater. Sci. Eng. 7, 360–372 (2021)

    Article  CAS  PubMed  Google Scholar 

  47. L. Zhang, P. Chen, Y. Xu, W. Nie, Y. Zhou, Enhanced photo-induced antibacterial application of graphene oxide modified by sodium anthraquinone-2-sulfonate under visible light. Appl. Catal. B 265, 118572 (2020)

    Article  CAS  Google Scholar 

  48. A.A. Aly, M.K. Ahmed, Nanofibers of cellulose acetate containing ZnO nanoparticles/graphene oxide for wound healing applications. Int. J. Pharm. 598, 120325 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. M.F.H.A. El-Kader, N.S. Awwad, H.A. Ibrahium, M.K. Ahmed, Graphene oxide fillers through polymeric blends of PVC/PVDF using laser ablation technique: electrical, antibacterial, and thermal stability. J. Mater. Res. Technol. 13, 1878 (2021)

    Article  CAS  Google Scholar 

  50. C.C. Lopes, W.A. Pinheiro, D. Navarro da Rocha, J.G. Neves, A.B. Correr, J.R.M. Ferreira et al., Nanocomposite powders of hydroxyapatite-graphene oxide for biological applications. Ceram. Int. 47, 7653–7665 (2021)

    Article  CAS  Google Scholar 

  51. GdC. Prado, W.R. Weinand, E.A. Volnistem, M.L. Baesso, J.N. Gimenez Noronha, C. Truite et al., Physicochemical and bone regeneration studies using scaffoldings of pure natural hydroxyapatite or associated with Nb2O5. Mater. Chem. Phys. 272, 124922 (2021)

    Article  CAS  Google Scholar 

  52. H.J. Kiyochi Junior, A.G. Candido, T.G.M. Bonadio, J.A. da Cruz, M.L. Baesso, W.R. Weinand et al., In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb2O5) nanocomposite and tissues using a rat critical-size calvarial defect model. J. Mater. Sci. 31, 71 (2020)

    CAS  Google Scholar 

  53. M.K. Ahmed, M.E. El-Naggar, A. Aldalbahi, M.H. El-Newehy, A.A. Menazea, Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J. Mol. Liq. 315, 113794 (2020)

    Article  CAS  Google Scholar 

  54. S.F. Mansour, S.I. El-dek, M. Ismail, M.K. Ahmed, Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomedical Phys. Eng. Express 4, 045008 (2018)

    Article  Google Scholar 

  55. M.F. Abdelbar, H.S. El-Sheshtawy, K.R. Shoueir, I. El-Mehasseb, E.Z. Ebeid, M. El-Kemary, Halogen bond triggered aggregation induced emission in an iodinated cyanine dye for ultra sensitive detection of Ag nanoparticles in tap water and agricultural wastewater. RSC Adv. 8, 24617–24626 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M.A. Zakria, A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surf. Interfaces 19, 100438 (2020)

    Article  CAS  Google Scholar 

  57. A.M. Abdelghany, A.A. Menazea, A.M. Ismail, Synthesis, characterization and antimicrobial activity of chitosan/polyvinyl alcohol blend doped with Hibiscus Sabdariffa L. extract. J. Mol. Struct. 1197, 603–609 (2019)

    Article  CAS  Google Scholar 

  58. A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by sol–gel method. J. Mol. Struct. 1196, 332–337 (2019)

    Article  CAS  Google Scholar 

  59. M.F.H.A. El-Kader, M.K. Ahmed, M.T. Elabbasy, M. Afifi, A.A. Menazea, Morphological, ultrasonic mechanical and biological properties of hydroxyapatite layers deposited by pulsed laser deposition on alumina substrates. Surf. Coat. Technol. 409, 126861 (2021)

    Article  CAS  Google Scholar 

  60. A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 3 (1966)

    Article  CAS  Google Scholar 

  61. M. Vosoughifar, Preparation of nanocrystalline niobium pentoxide with different morphologies via a thermal decomposition route. J. Mater. Sci. 28, 532–536 (2017)

    CAS  Google Scholar 

  62. R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683–15703 (2014)

    Article  CAS  Google Scholar 

  63. M.J. Lukić, L. Veselinović, M. Stevanović, J. Nunić, G. Dražič, S. Marković et al., Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater. Lett. 122, 296–300 (2014)

    Article  CAS  Google Scholar 

  64. D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, R.P. Dwivedi, J, et al. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel. Appl. Surf. Sci. 286, 83–90 (2013)

    Article  CAS  Google Scholar 

  65. S. Hiromoto, M. Inoue, T. Taguchi, M. Yamane, N. Ohtsu, In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater. 11, 520–530 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. S.F. Mansour, S.I. El-Dek, M.K. Ahmed, Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O. Kaygili, S. Keser, N. Bulut, T. Ates, Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Phys. B 537, 63–67 (2018)

    Article  CAS  Google Scholar 

  68. G. Surekha, K.V. Krishnaiah, N. Ravi, R.P. Suvarna, FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. J. Phys 1495, 012012 (2020)

    CAS  Google Scholar 

  69. V.K. Mishra, B.N. Bhattacharjee, O. Parkash, D. Kumar, S.B. Rai, Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations. J. Alloys Compd. 614, 283–288 (2014)

    Article  CAS  Google Scholar 

  70. A.E. Shalan, M. Afifi, M.M. El-Desoky, M.K. Ahmed, Electrospun nanofibrous membranes of cellulose acetate containing hydroxyapatite co-doped with Ag/Fe: Morphological features, antibacterial activity and degradation of methylene blue in aqueous solution. New J. Chem. 45(20), 9212–9220 (2021)

    Article  CAS  Google Scholar 

  71. S. Guerrero, J. Miller, A. Kropf, E. Wolf, In situ EXAFS and FTIR studies of the promotion behavior of Pt–Nb2O5/Al2O3 catalysts during the preferential oxidation of CO. J. Catal. 262, 102–110 (2009)

    Article  CAS  Google Scholar 

  72. O. Kaygili, C. Tatar, F. Yakuphanoglu, S. Keser, Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. J. Solgel Sci. Technol. 65, 105–111 (2012)

    Article  CAS  Google Scholar 

  73. M.K. Ahmed, R. Ramadan, S.I. El-dek, V. Uskoković, Complex relationship between alumina and selenium-doped carbonated hydroxyapatite as the ceramic additives to electrospun polycaprolactone scaffolds for tissue engineering applications. J. Alloys Compd. 801, 70–81 (2019)

    Article  CAS  Google Scholar 

  74. K. Lin, Y. Zhou, Y. Zhou, H. Qu, F. Chen, Y. Zhu et al., Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: Surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J. Mater. Chem. 21, 16558 (2011)

    Article  CAS  Google Scholar 

  75. K. Kotsis, V. Staemmler, Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxo compounds. Phys. Chem. Chem. Phys. 8, 1490–1498 (2006)

    Article  CAS  PubMed  Google Scholar 

  76. A. Kato, H. Kowada, M. Deguchi, C. Hotehama, A. Hayashi, M. Tatsumisago, XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ionics 322, 1–4 (2018)

    Article  CAS  Google Scholar 

  77. X. Chen, X. Wang, D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostruct. 28, 1048–1058 (2020)

    Article  CAS  Google Scholar 

  78. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, An XPS study on the surface reduction of V2O5 (0 0 1) induced by Ar + ion bombardment. Surf. Sci. 600, 3512–3517 (2006)

    Article  CAS  Google Scholar 

  79. B.M. Reddy, I. Ganesh, E.P. Reddy, Study of dispersion and thermal stability of V2O5/TiO2 – SiO2 catalysts by XPS and other techniques. J. Phys. Chem. B 101, 1769–1774 (1997)

    Article  CAS  Google Scholar 

  80. J.T. Doveren Hv, Verhoeven, XPS spectra of Ca, Sr, Ba and their oxides. J. Electron Spectrosc. Relat. Phenom. 21, 265–273 (1980)

    Article  Google Scholar 

  81. Z. Weibin, W. Weidong, W. Xueming, C. Xinlu, Y. Dawei, S. Changle et al., The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods. Surf. Interface Anal. 45, 1206–1210 (2013)

    Article  CAS  Google Scholar 

  82. H. Donya, R. Darwesh, M. Ahmed, Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. Int. J. Biol. Macromol. 186, 897 (2021)

    Article  CAS  PubMed  Google Scholar 

  83. T. Zhao, Z. Qiu, Y. Zhang, F. Hu, J. Zheng, C. Lin, Using a three-dimensional hydroxyapatite/graphene aerogel as a high-performance anode in microbial fuel cells. J. Environ. Chem. Eng. 9, 105441 (2021)

    Article  CAS  Google Scholar 

  84. C.C. Negrila, M.V. Predoi, S.L. Iconaru, D. Predoi, Development of zinc-doped hydroxyapatite by sol-gel method for medical applications. Molecules 23, 2986 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  85. S.-L. Iconaru, M. Motelica-Heino, D. Predoi, Study on europium-doped hydroxyapatite nanoparticles by Fourier transform infrared spectroscopy and their antimicrobial properties. J. Spectrosc. 2013, 1–10 (2013)

    Article  CAS  Google Scholar 

  86. J.L. Dehmer, J. Berkowitz, Partial photoionization cross sections for Hg between 600 and 250 Å. Effect of spin-orbit coupling on the D 5 2 2 D 3 2 2 branching ratio of Hg. Phys. Rev. A 10, 484 (1974)

    Article  CAS  Google Scholar 

  87. J. Chastain, R.C. King Jr., Handbook of X-ray photoelectron spectroscopy (Perkin-Elmer, Waltham, 1992), p. 261

    Google Scholar 

  88. M. Dinu, L. Braic, S.C. Padmanabhan, M.A. Morris, I. Titorencu, V. Pruna et al., Characterization of electron beam deposited Nb2O5 coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 103, 103582 (2020)

    Article  CAS  PubMed  Google Scholar 

  89. L.A. Zavala-Sanchez, G.A. Hirata, E. Novitskaya, K. Karandikar, M. Herrera, O.A. Graeve, Distribution of Eu(2+) and Eu(3+) ions in hydroxyapatite: a cathodoluminescence and raman study. ACS Biomater. Sci. Eng. 1, 1306–1313 (2015)

    Article  CAS  PubMed  Google Scholar 

  90. M. Wang, Y. Liu, G. Ren, W. Wang, S. Wu, J. Shen, Bioinspired carbon quantum dots for sensitive fluorescent detection of vitamin B12 in cell system. Anal. Chim. Acta 1032, 154–162 (2018)

    Article  CAS  PubMed  Google Scholar 

  91. J.A. Moreto, R.V. Gelamo, M.V. da Silva, T.T. Steffen, C.J.F. de Oliveira, P.A. de Almeida Buranello et al., New insights of Nb2O5-based coatings on the 316L SS surfaces: enhanced biological responses. J. Mater. Sci. 32, 25 (2021)

    CAS  Google Scholar 

  92. A.R. El-Ghannam, Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J. Biomed. Mater. Res. A 69, 490–501 (2004)

    Article  PubMed  CAS  Google Scholar 

  93. J. Rouwkema, B.F. Koopman, C.A.V. Blitterswijk, W.J. Dhert, J. Malda, Supply of nutrients to cells in engineered tissues. Biotechnol. Genet. Eng. Rev. 26, 163–178 (2009)

    Article  Google Scholar 

  94. S. Ashraf, M. Ahmed, H.A. Ibrahium, N.S. Awwad, E. Abdel-Fattah, M. Ghoniem, Nanofibers of polycaprolactone containing hydroxyapatite doped with aluminum/vanadate ions for wound healing applications. New J. Chem. 48, 22610 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge support and funding of King Khalid University through Research Center for Advanced Materials Science (RCAMS) under Grant No.: RCAMS/KKU/009/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrez E. El-Naggar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afifi, M., El-Naggar, M.E., Muhammad, S. et al. Compositional Adjusting and Antibacterial Improvement of Hydroxyapatite/Nb2O5/Graphene Oxide for Medical Applications. J Inorg Organomet Polym 32, 2160–2172 (2022). https://doi.org/10.1007/s10904-022-02266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02266-4

Keywords

Navigation