Skip to main content
Log in

Synthesis of Graphene Oxide/Iron Oxide/Au Nanocomposite for Quercetin Delivery

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study focused on developing a superparamagnetic graphene oxide-based nanocomposite consisting of iron oxide (IO) and gold nanoparticles for quercetin delivery. For this purpose, the structure and morphology of the designed nanocomposite (GO/IO/Au) were investigated by several characterization methods such as fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, vibrating-sample magnetometer (VSM) analysis, field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM). Then, the biocompatibility of the synthesized nanocomposite was studied by Brine shrimp Artemia lethality assay, red blood cell hemolysis assay, and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Moreover, the GO/IO/Au nanocomposite efficiency as an anticancer drug delivery system was evaluated in vitro conditions. The results showed that the designed nanocomposite is highly biocompatible and possesses a favorable magnetization (Ms = 29.2 emu.g−1) making it a good candidate for biomedical applications. Also, it was confirmed that GO/IO/Au nanocomposite is a potent drug carrier that can effectively deliver quercetin to cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.B. Santhosh, N.P. Ulrih, Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett. 336(1), 8–17 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. R. Siegel, C. DeSantis, K. Virgo, K. Stein, A. Mariotto, T. Smith, D. Cooper, T. Gansler, C. Lerro, S. Fedewa, Cancer treatment and survivorship statistics, 2012, CA: a cancer journal for clinicians 62(4) (2012) 220–241.

  3. X.J. Lee, H.N. Lim, N. Gowthaman, M.B.A. Rahman, C.A.C. Abdullah, K. Muthoosamy, In-situ surface functionalization of superparamagnetic reduced graphene oxide–Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Appl. Surf. Sci. 512, 145738 (2020)

    Article  CAS  Google Scholar 

  4. Y. Xin, Q. Huang, J.-Q. Tang, X.-Y. Hou, P. Zhang, L.Z. Zhang, G. Jiang, Nanoscale drug delivery for targeted chemotherapy. Cancer Lett. 379(1), 24–31 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. H. Wang, J. Yu, X. Lu, X. He, Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine 11(2), 103–106 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. N. Oku, Innovations in liposomal DDS technology and its application for the treatment of various diseases. Biol. Pharm. Bull. 40(2), 119–127 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Z. Ahmad, A. Shah, M. Siddiq, H.-B. Kraatz, Polymeric micelles as drug delivery vehicles. RSC Adv. 4(33), 17028–17038 (2014)

    Article  CAS  Google Scholar 

  9. S. Amani, Z. Mohamadnia, E. Ahmadi, A. Mahdavi, M. Kermanian, Self-assembled polyelectrolyte complex nanoparticles as a potential carrier in protein delivery systems. J. Drug. Deliv. Sci. Technol. 54, 101250 (2019)

    Article  CAS  Google Scholar 

  10. C. Gong, C. Wang, Y. Wang, Q. Wu, D. Zhang, F. Luo, Z. Qian, Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale 4(10), 3095–3104 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9(12), 9243–9257 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. K. Yang, L. Feng, Z. Liu, The advancing uses of nano-graphene in drug delivery. Expert Opin. Drug Deliv. 12(4), 601–612 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. M.N. Al-Qattan, P.K. Deb, R.K. Tekade, Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discovery Today 23(2), 235–250 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. M. Yoosefian, M. Jahani, A molecular study on drug delivery system based on carbon nanotube for the novel norepinephrine prodrug, Droxidopa. J. Mol. Liq. 284, 258–264 (2019)

    Article  CAS  Google Scholar 

  15. M. Kamel, H. Raissi, A. Morsali, M. Shahabi, Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD. Appl. Surf. Sci. 434, 492–503 (2018)

    Article  CAS  Google Scholar 

  16. C.T. Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu, L. Mocan, Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 12, 5421 (2017)

    Article  CAS  Google Scholar 

  17. D. Iannazzo, A. Pistone, M. Salamò, S. Galvagno, R. Romeo, S.V. Giofré, C. Branca, G. Visalli, A. Di Pietro, Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 518(1–2), 185–192 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. M. Kermanian, M. Naghibi, S. Sadighian, One-pot hydrothermal synthesis of a magnetic hydroxyapatite nanocomposite for MR imaging and pH-Sensitive drug delivery applications. Heliyon 6(9), e04928 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  19. C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65(5), 703–718 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. S. Pinel, N. Thomas, C. Boura, M. Barberi-Heyob, Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Adv. Drug Deliv. Rev. 138, 344–357 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. E.R. Evans, P. Bugga, V. Asthana, R. Drezek, Metallic nanoparticles for cancer immunotherapy. Mater. Today 21(6), 673–685 (2018)

    Article  CAS  Google Scholar 

  22. K.D. Patel, R.K. Singh, H.-W. Kim, Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz. 6(3), 434–469 (2019)

    Article  CAS  Google Scholar 

  23. D. Maiti, X. Tong, X. Mou, K. Yang, Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 9, 1401 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. M. Islami, A. Zarrabi, S. Tada, M. Kawamoto, T. Isoshima, Y. Ito, Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int. J. Nanomed. 13, 6059 (2018)

    Article  CAS  Google Scholar 

  25. R. Muñoz, D.P. Singh, R. Kumar, A. Matsuda, Graphene oxide for drug delivery and cancer therapy. Nanostructured polymer composites for biomedical applications (2019). https://doi.org/10.1016/B978-0-12-816771-7.00023-5

    Article  Google Scholar 

  26. Y. Huang, K. Mao, B. Zhang, Y. Zhao, Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng., C 70, 763–771 (2017)

    Article  CAS  Google Scholar 

  27. S. Peng, Q.Y. Wang, X. Xiao, R. Wang, J. Lin, Q.H. Zhou, L.N. Wu, Redox-responsive polyethyleneimine-coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polym. Int. 69(2), 206–214 (2020)

    Article  CAS  Google Scholar 

  28. J. Long, X. Yu, E. Xu, Z. Wu, X. Xu, Z. Jin, A. Jiao, In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohyd. Polym. 131, 98–107 (2015)

    Article  CAS  Google Scholar 

  29. A. Carvalho, M. Martins, M. Corvo, G. Feio, Enhanced contrast efficiency in MRI by PEGylated magnetoliposomes loaded with PEGylated SPION: effect of SPION coating and micro-environment. Mater. Sci. Eng., C 43, 521–526 (2014)

    Article  CAS  Google Scholar 

  30. Z. Zhao, D. Huang, Z. Yin, X. Chi, X. Wang, J. Gao, Magnetite nanoparticles as smart carriers to manipulate the cytotoxicity of anticancer drugs: magnetic control and pH-responsive release. J. Mater. Chem. 22(31), 15717–15725 (2012)

    Article  CAS  Google Scholar 

  31. N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115(19), 10637–10689 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. A. Tayyebi, S. Moradi, F. Azizi, M. Outokesh, K. Shadanfar, S.S. Mousavi, Fabrication of new magnetite-graphene nanocomposite and comparison of its laser-hyperthermia properties with conventionally prepared magnetite-graphene hybrid. Mater. Sci. Eng., C 75, 572–581 (2017)

    Article  CAS  Google Scholar 

  33. J.A. Ramos-Guivar, E.C. Passamani, J. Litterst, Superspinglass state in functionalized zeolite 5A-maghemite nanoparticles. AIP Adv. 11(3), 035223 (2021)

    Article  CAS  Google Scholar 

  34. J.A. Ramos-Guivar, D.A. Flores-Cano, E. Caetano Passamani, Differentiating nanomaghemite and nanomagnetite and discussing their importance in arsenic and lead removal from contaminated effluents: a critical review. Nanomaterials 11(9), 2310 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Kumar, X. Zhang, X.-J. Liang, Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 31(5), 593–606 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. N. Amanlou, M. Parsa, K. Rostamizadeh, S. Sadighian, F. Moghaddam, Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Mater. Chem. Phys. 226, 151–157 (2019)

    Article  CAS  Google Scholar 

  37. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  CAS  Google Scholar 

  38. A. Ramazani, M. Abrvash, S. Sadighian, K. Rostamizadeh, M. Fathi, Preparation and characterization of curcumin loaded gold/graphene oxide nanocomposite for potential breast cancer therapy. Res. Chem. Intermed. 44(12), 7891–7904 (2018)

    Article  CAS  Google Scholar 

  39. S. Sadighian, N. Bayat, S. Najaflou, M. Kermanian, M. Hamidi, Preparation of graphene oxide/Fe3O4 nanocomposite as a potential magnetic nanocarrier and MRI contrast agent. ChemistrySelect 6(12), 2862–2868 (2021)

    Article  CAS  Google Scholar 

  40. A. Michael, C. Thompson, M. Abramovitz, Artemia salina as a test organism for bioassay. Science 123(3194), 464–464 (1956)

    Article  CAS  PubMed  Google Scholar 

  41. S. Rajabi, A. Ramazani, M. Hamidi, T. Naji, Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J. Pharm. Sci. 23(1), 20 (2015)

    Article  CAS  Google Scholar 

  42. S. Majumder, M. Sardar, B. Satpati, S. Kumar, S. Banerjee, Magnetization enhancement of Fe3O4 by attaching onto graphene oxide: an interfacial effect. J. Phys. Chem. C 122(37), 21356–21365 (2018)

    Article  CAS  Google Scholar 

  43. S. Sadighian, K. Rostamizadeh, M.-J. Hosseini, M. Hamidi, H. Hosseini-Monfared, Magnetic nanogels as dual triggered anticancer drug delivery: toxicity evaluation on isolated rat liver mitochondria. Toxicol. Lett. 278, 18–29 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. G. Vinodha, L. Cindrella, V. Sithara, J. Philip, P. Shima, Synthesis, characterization, thermal conductivity and rheological studies in magnetite-decorated graphene oxide nanofluids. J. Nanofluids 7(1), 11–20 (2018)

    Article  Google Scholar 

  45. M. Kermanian, S. Sadighian, A. Ramazani, M. Naghibi, S.H. Hosseini, A novel mesoporous superparamagnetic hybrid silica/hydroxyapatite nanocomposite as MRI contrast agent. ChemNanoMat 7(3), 284–291 (2021)

    Article  CAS  Google Scholar 

  46. Y.-S. Wang, Y. Wang, H. Xia, G. Wang, Z.-Y. Zhang, D.-D. Han, C. Lv, J. Feng, H.-B. Sun, Preparation of a Fe 3 O 4–Au–GO nanocomposite for simultaneous treatment of oil/water separation and dye decomposition. Nanoscale 8(40), 17451–17457 (2016)

    Article  CAS  PubMed  Google Scholar 

  47. Y. Canchanya-Huaman, A.F. Mayta-Armas, J. Pomalaya-Velasco, Y. Bendezú-Roca, J.A. Guerra, J.A. Ramos-Guivar, Strain and grain size determination of CeO2 and TiO2 nanoparticles: comparing integral breadth methods versus rietveld, μ-Raman, and TEM. Nanomaterials 11(9), 2311 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y.-X.J. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11(11), 2319–2331 (2001)

    Article  CAS  PubMed  Google Scholar 

  49. S.R. Kumar, S. Priyatharshni, V. Babu, D. Mangalaraj, C. Viswanathan, S. Kannan, N. Ponpandian, Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J. Colloid Interface Sci. 436, 234–242 (2014)

    Article  PubMed  CAS  Google Scholar 

  50. C. Belviso, E. Agostinelli, S. Belviso, F. Cavalcante, S. Pascucci, D. Peddis, G. Varvaro, S. Fiore, Synthesis of magnetic zeolite at low temperature using a waste material mixture: Fly ash and red mud. Microporous Mesoporous Mater. 202, 208–216 (2015)

    Article  CAS  Google Scholar 

  51. D. Stuart, A. Haes, C. Yonzon, E. Hicks, R. Van Duyne, Biological applications of localised surface plasmonic phenomenae, IEE Proceedings-Nanobiotechnology, IET, 2005, pp. 13–32.

  52. M. Ravichandran, G. Oza, S. Velumani, J.T. Ramirez, F. Garcia-Sierra, N.B. Andrade, A. Vera, L. Leija, M.A. Garza-Navarro, Plasmonic/magnetic multifunctional nanoplatform for cancer theranostics. Sci. Rep. 6(1), 1–15 (2016)

    Article  CAS  Google Scholar 

  53. R. Vivek, V.N. Babu, R. Thangam, K. Subramanian, S. Kannan, pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf., B 111, 117–123 (2013)

    Article  CAS  Google Scholar 

  54. Y.-J. Xu, L. Dong, Y. Lu, L.-C. Zhang, D. An, H.-L. Gao, D.-M. Yang, W. Hu, C. Sui, W.-P. Xu, Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale 8(3), 1684–1690 (2016)

    Article  CAS  PubMed  Google Scholar 

  55. M. Ates, J. Daniels, Z. Arslan, I.O. Farah, H.F. Rivera, Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci. Process Impacts. 15(1), 225–233 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. A. Ramazani, S. Sardari, S. Zakeri, B. Vaziri, In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol. Res. 107(3), 593–599 (2010)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zanjan University of Medical Sciences.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehraneh Kermanian or Somayeh Sadighian.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 829 kb)

The electronic supporting information includes the XRD pattern of the pristine GOsheet and images of the hemolysis assay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saqezi, A.S., Kermanian, M., Ramazani, A. et al. Synthesis of Graphene Oxide/Iron Oxide/Au Nanocomposite for Quercetin Delivery. J Inorg Organomet Polym 32, 1541–1550 (2022). https://doi.org/10.1007/s10904-022-02259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02259-3

Keywords

Navigation