Skip to main content

Advertisement

Log in

Hexagonal Boron Nitride/PCL/PLG Coatings on Borate Bioactive Glass Scaffolds for Bone Regeneration

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, hexagonal boron nitride (hBN) nanoparticle- containing (0.1–2 wt%) polycaprolactone (PCL) and polylactic-co-glycolic acid (PLG)-coated 13-93B3 borate-based porous bioactive glass composite scaffolds were prepared by polymer foam replication method and their ability to use in bone tissue engineering applications was assessed. Morphological, mechanical properties, cytotoxicity and the drug release behavior of the prepared composite scaffolds were investigated. In vitro bioactivity was tested in simulated body fluid and results were analyzed using FTIR spectrometer and SEM. Results showed that both polymer coating and the existence of hBN nanoparticles in the polymeric matrix improved the compressive strength of the fabricated composite scaffolds. Incorporation of the hBN nanoparticles enhanced the in vitro hydroxyapatite forming ability of the glass composites. Results also revealed that prepared bioactive glass based composite scaffolds showed no toxicity to MC3T3-E1 cells under in vitro conditions up to 72 h and hBN-containing glass scaffolds showed higher gentamicin sulfate release rates compared to the bare polymer coated scaffolds. Manufactured bioactive glass scaffolds containing hBN nanoparticles are found to be promising for bone repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee Jr., Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2, 117–141 (1971). https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  2. L.L. Hench, J. Wilson, Surface active biomaterials. Science 226, 630–636 (1984). https://doi.org/10.1126/science.6093253

    Article  CAS  PubMed  Google Scholar 

  3. M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, Bioactive glass in tissue engineering. Acta Biomater. 7(6), 2355–2373 (2011). https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. W. Liang, N.M. Rahaman, D. Day, N. Marion, G. Riley, J. Mao, Bioactive borate glass scaffold for bone tissue engineering. J. Non-Cryst. Solids 354, 1690–1696 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.003

    Article  CAS  Google Scholar 

  5. J. Ning, A. Yao, D. Wang, W. Huang, H. Fu, X. Liu, X. Jiang, X. Zhang, Synthesis and in vitro bioactivity of a borate-based bioglass. Mater. Lett. 61, 5223–5226 (2007). https://doi.org/10.1016/j.matlet.2007.04.089

    Article  CAS  Google Scholar 

  6. W.-T. Jia, X. Zhang, S.-H. Luo, X. Liu, W.-H. Huang, N.M. Rahaman, D. Day, C.-Q. Zhang, Z.-P. Xie, J.-Q. Wang, Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater. 6, 812–819 (2009). https://doi.org/10.1016/j.actbio.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  7. R. Sergi, D. Bellucci, V. Cannillo, A review of bioactive glass/natural polymer composites: state of the art. Materials 13, 5560 (2002). https://doi.org/10.3390/ma13235560

    Article  CAS  Google Scholar 

  8. A.M. Deliormanlı, Fabrication and characterization of poly caprolactone coated silicate and borate based bioactive glass composite scaffolds. J. Compos. Mater. 50(7), 917–928 (2016). https://doi.org/10.1177/0021998315583320

    Article  CAS  Google Scholar 

  9. M. Türk, A.M. Deliormanlı, Graphene-containing PCL- coated porous 13–93B3 bioactive glass scaffolds for bone regeneration. Mater. Res. Express 5(4), 045406 (2018). https://doi.org/10.1088/2053-1591/aab87b

    Article  CAS  Google Scholar 

  10. M. Jedrzejczak-Silicka, M. Trukawka, M. Dudziak, K. Piotrowska, E. Mijowska, Hexagonal boron nitride functionalized with Au nanoparticles—properties and potential biological applications. Nanomaterials 8, 605 (2018). https://doi.org/10.3390/nano8080605

    Article  CAS  PubMed Central  Google Scholar 

  11. A. Merlo, V.R.S.S. Mokkapati, S. Pandit, I. Mijakovic, Boron nitride nanomaterials: biocompatibility and bio-applications. Biomater. Sci. 6, 2298–2311 (2018). https://doi.org/10.1039/C8BM00516H

    Article  CAS  PubMed  Google Scholar 

  12. D. Golberg, Y. Bando, Y. Huang, T. Terano, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010). https://doi.org/10.1021/nn1006495

    Article  CAS  PubMed  Google Scholar 

  13. H. Sediri, D. Pierucci, M. Hajlaoui, H. Henck, G. Patriarche, Y.J. Dappe, S. Yuan, B. Toury, R. Belkhou, M.G. Silly et al., Atomically sharp interface in an h-BN-epitaxial graphene van der Waals heterostructure. Sci. Rep. 5, 16465 (2015). https://doi.org/10.1038/srep16465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Wang, F. Ma, W. Liang, M. Sun, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys. 2, 6–34 (2017). https://doi.org/10.1016/j.mtphys.2017.07.001

    Article  Google Scholar 

  15. J. Joy, E. George, P. Haritha, S. Thomas, S. Anas, An overview of boron nitride based polymer nanocomposites. J. Polym. Sci. 58(22), 3115–3141 (2020). https://doi.org/10.1002/pol.20200507

    Article  CAS  Google Scholar 

  16. C. Zhi, B. Yoshio, W. Wang, C. Tang, K. Hiroaki, G. Dmitri, Mechanical and thermal properties of polymethyl methacrylate-BN nanotube composites. J. Nanomater. (2008). https://doi.org/10.1155/2008/642036

    Article  Google Scholar 

  17. L. Hao, I.C. Chen, J.K. Oh, N. Nagabandi, F. Bassan, S. Liu, E. Scholar, L. Zhang, M. Akbulut, B. Jiang, Nanocomposite foam involving boron nitride nanoplatelets and polycaprolactone: porous structures with multiple length scales for oil spill cleanup. Ind. Eng. Chem. Res. 56, 14670 (2017). https://doi.org/10.1021/acs.iecr.7b03911

    Article  CAS  Google Scholar 

  18. F. Bakan, M. Sezen, M. Geçgin, Y. Göncü, A.Y. Nuran, Structural and chemical analysis of hydroxyapatite (HA)-boron nitride (BN) nanocomposites sintered under different atmospheric conditions. Microsc. Microanal. 23, 1–9 (2017). https://doi.org/10.1017/S1431927617012405

    Article  CAS  Google Scholar 

  19. S. Unal, N. Ekren, A.Z. Sengil, F.N. Oktar, S. Irmak, O. Oral, Y.M. Sahin, O. Kilic, S. Agathopoulos, O. Gunduz, Synthesis, characterization, and biological properties of composites of hydroxyapatite and hexagonal boron nitride. J. Biomed. Mater. Res. B 106(6), 2384–2392 (2018). https://doi.org/10.1002/jbm.b.34046

    Article  CAS  Google Scholar 

  20. R. Saggar, H. Porwal, P. Tatarko, I. Dlouhý, M.J. Reece, Boron nitride nanosheets reinforced glass matrix composites. Adv. Appl. Ceram. 114(sup1), S26–S33 (2015). https://doi.org/10.1179/1743676115Y.0000000056

    Article  CAS  Google Scholar 

  21. A.I. Rasel, T. Li, T.D. Nguyen, S. Singh, Y. Zhou, Y. Xiao, Y.T. Gu, Bio physical response of living cells to boron nitride nanoparticles: Uptake mechanism and bio-mechanical characterization. J. Nanopart. Res. 17, 441 (2015). https://doi.org/10.1007/s11051-015-3248-2

    Article  CAS  Google Scholar 

  22. X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890–891 (2009). https://doi.org/10.1021/ja807334b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. L. Horváth, A. Magrez, D. Golberg, C. Zhi, Y. Bando, R. Smajda, E. Horváth, L. Forró, B. Schwaller, In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 5, 3800–3810 (2011). https://doi.org/10.1021/nn200139h

    Article  CAS  PubMed  Google Scholar 

  24. T. Lu, L. Wang, Y. Jiang, Q. Liu, C. Huang, Hexagonal boron nitride nanoplates as emerging biological nanovectors and their potential applications in biomedicine. J. Mater. Chem. B 4(36), 6103–6110 (2016). https://doi.org/10.1039/C6TB01481J

    Article  CAS  PubMed  Google Scholar 

  25. K.Y. Gudz, E.S. Permyakova, A.T. Matveev, A.V. Bondarev, A.M. Manakhov, D.A. Sidorenko, S.Y. Filippovich, A.V. Brouchkov, D.V. Golberg, S.G. Ignatov, D.V. Shtansky, Pristine and antibiotic-loaded nanosheets/nanoneedles-based boron nitride films as a promising platform to suppress bacterial and fungal infections. ACS Appl. Mater. Interfaces 12(38), 42485–42498 (2020). https://doi.org/10.1021/acsami.0c10169

    Article  CAS  PubMed  Google Scholar 

  26. M. Ensoylu, A.M. Deliormanlı, H.A. İlhan, Tungsten disulfide nanoparticle-containing PCL and PLGA-coated bioactive glass composite scaffolds for bone tissue engineering applications. J. Mater. Sci. 56(33), 18650–18667 (2021). https://doi.org/10.1007/s10853-021-06494-w

    Article  CAS  Google Scholar 

  27. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W. J Biomed. Mater. Res. 24, 721–734 (1990). https://doi.org/10.1002/jbm.820240607

    Article  CAS  PubMed  Google Scholar 

  28. E. Altun, E. Yuca, N. Ekren, D.M. Kalaskar, D. Ficai, G. Dolete, A. Ficai, O. Gunduz, Kinetic release studies of antibiotic patches for localtransdermal delivery. Pharmaceutics 13, 613 (2021). https://doi.org/10.3390/pharmaceutics13050613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica Drug Res. 67(3), 217–223 (2010)

    CAS  Google Scholar 

  30. D.W. Bourne, Pharmacokinetics, in Modern Pharmaceutics, 4th edn., ed. by G.S. Banker, C.T. Rhodes (Marcel Dekker Inc, New York, 2002)

    Google Scholar 

  31. C. Du, H. Ma, M. Ruo, Z. Zhang, X. Yu, Y. Zeng, An experimental study on the biomechanical properties of the cancellous bones of distal femur. Biomed. Mater. Eng. 16, 215–222 (2006)

    PubMed  Google Scholar 

  32. D. Lahiri, F. Rouzaud, T. Richard, A.K. Keshri, S.R. Bakshi, L. Kos, A. Agarwal, Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6(9), 3524–3533 (2010). https://doi.org/10.1016/j.actbio.2010.02.044

    Article  CAS  PubMed  Google Scholar 

  33. S. Nagarajan, H. Belaïd, C. Pochat-Bohatier, C. Teyssier, I. Iatsunskyi et al., Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Appl. Mater. Interfaces 9(39), 33695–33706 (2017). https://doi.org/10.1021/acsami.7b13199

    Article  CAS  PubMed  Google Scholar 

  34. R.F. Brown, M.N. Rahaman, A.B. Dwilewicz, W. Huang, D.E. Day, Y. Li, B.S. Bal, Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J. Biomed. Mater. Res. Part A (2007). https://doi.org/10.1002/jbm.a.31679

    Article  Google Scholar 

  35. J. Pawlik, K. Jukowicz, K. Cholewa-Kowalska, A.M. Osyczka, New insights into the PLGA and PCL blending: physico-mechanical properties and cell response. Mater. Res. Express 6, 085344 (2019). https://doi.org/10.1088/2053-1591/ab2823

    Article  CAS  Google Scholar 

  36. S.J. Gadaleta, E.P. Paschalis, F. Betts, R. Mendelsohn, A.L. Boskey, Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: New correlations between X-ray diffraction and infrared data. Calcif. Tissue Int. 58, 9–16 (1996). https://doi.org/10.1007/BF02509540

    Article  CAS  PubMed  Google Scholar 

  37. S. Gunasekaran, G. Anbalagan, S. Pandi, Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 37, 892–899 (2006). https://doi.org/10.1002/jrs.1518

    Article  CAS  Google Scholar 

  38. K.W. Chan, H.M. Wong, K.W.K. Yeung, S.C. Tjong, Polypropylene biocomposites with boron nitride and nano-hydroxyapatite reinforcements. Materials 8, 992–1008 (2015). https://doi.org/10.3390/ma8030992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D. Lahiri, V. Singh, A.K. Keshri, S. Seal, A. Agarwal, Apatite formability of boron nitride nanotubes. Nanotechnology 22, 205601 (2011). https://doi.org/10.1088/0957-4484/22/20/205601

    Article  CAS  PubMed  Google Scholar 

  40. H.-L. Nguyen, Z. Hanif, S.-A. Park, B.G. Choi, T.H. Tran, D.S. Hwang, J. Park, S.Y. Hwang, D.X. Oh, Sustainable boron nitride nanosheet-reinforced cellulose nanofiber composite film with oxygen barrier without the cost of color and cytotoxicity. Polymers 10(5), 501 (2018). https://doi.org/10.3390/polym10050501

    Article  CAS  PubMed Central  Google Scholar 

  41. S.M. Sharker, Hexagonal boron nitrides (white graphene): a promising method for cancer drug delivery. Int. J. Nanomed. 14, 9983–9993 (2019). https://doi.org/10.2147/IJN.S205095

    Article  Google Scholar 

  42. E. Melis, S. Özlem, T.I. Çulha, Ç. Mustafa, Synthesis, functionalization, and bioapplications of two-dimensional boron nitride nanomaterials. Front. Bioeng. Biotechnol. 7, 363 (2019). https://doi.org/10.3389/fbioe.2019.00363

    Article  Google Scholar 

  43. D.R. Paul, Elaborations on the Higuchi model for drug delivery. Int. J. Pharm. 418, 13–17 (2010). https://doi.org/10.1016/j.ijpharm.2010.10.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support for this research was provided by the Scientific and Technical Research Council of Turkey (TUBITAK), Short‐Term R&D Funding Program, Grant No.: 119M935.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin M. Deliormanlı.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 610 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ensoylu, M., Deliormanlı, A.M. & Atmaca, H. Hexagonal Boron Nitride/PCL/PLG Coatings on Borate Bioactive Glass Scaffolds for Bone Regeneration. J Inorg Organomet Polym 32, 1551–1566 (2022). https://doi.org/10.1007/s10904-022-02246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02246-8

Keywords

Navigation