Skip to main content

Advertisement

Log in

Effect of Both Sn Doping and Annealing Temperature on the Properties of Dip-Coated Nanostructured TiO2 Thin Films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The synthesis of active thin films supported on substrates overcomes the drawbacks of powder-based photocatalysis and energy harvesting. In this study, semiconducting thin films of pristine TiO2 and Sn doped TiO2 were coated on glass substrates by the sol–gel dip-coating method. The effect of both annealing temperature (450 and 500 °C, during 2 h in air atmosphere) and Sn dopant content (1, 3 and 5 at.%) on the structural, morphological and optical properties of Sn doped TiO2 films were studied. The correlation between these properties and the photocatalytic performance of the films in the removal of Rhodamine B solution under UV light was investigated. At 450 °C, Sn:TiO2 films exhibit anatase–brookite mixed phase, while at 500 °C, the films exhibit anatase phase. The crystallites sizes of the films were on a nanometer scale, between 19.01 and 26.57 nm. The pristine TiO2 film treated at 450 °C has a compact morphology with spherical grains, and after adding different Sn content, the nano-spheres turn into nanorods. At 500 °C, all the films illustrate a porous morphology with spherical grains. The two series are transparent in the visible region and have an optical band gap of 3.23–3.54 eV. The (e/h+) recombination rate of TiO2 film decreases as a function of Sn doping. The latter enhances the photocatalytic efficiency of porous TiO2 film and 1 at.% Sn:TiO2 exhibits the highest degradation rate, which can be attributed to a larger surface area and less (e/h+) recombination rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.R. Vazquez, G.D. Angel, V. Bertin, F. Gonzalez, A.V. Zavala, A. Arrieta, J.M. Padilla, A. Barrera, E.R. Ramirez, Synthesis and characterization of Sn doped TiO2 photocatalysts: effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. J. Alloys Compd. 643, 144–149 (2015). https://doi.org/10.1016/j.jallcom.2014.12.065

    Article  CAS  Google Scholar 

  2. S.B. Wategaonkar, V.G. Parale, S.S. Mali, C.K. Hong, R.P. Pawar, P.S. Maldar, A.V. Moholkar, H.H. Park, B.M. Sargar, R.K. Mane, Influence of Tin doped TiO2 nanorods on dye sensitized solar cells. Materials 14, 6282 (2021). https://doi.org/10.3390/ma14216282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. X. Tian, X. Cui, T. Lai, J. Ren, Z. Yang, M. Xiao, B. Wang, X. Xiao, Y. Wang, Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: a review. Nano Mater. Sci. 3, 390–403 (2021). https://doi.org/10.1016/j.nanoms.2021.05.011

    Article  CAS  Google Scholar 

  4. A. Doula, R. Bensaha, O. Beldjebli, Structural, optical and photocatalytic properties of Ba-doped TiO2 thin films. Acta Phys. Pol. A 140, 421–426 (2021). https://doi.org/10.12693/APhysPolA.140.421

    Article  CAS  Google Scholar 

  5. H.H. Bahjat, R.A. Ismail, G.M. Sulaiman, M.S. Jabir, Magnetic field-assisted laser ablation of TiO2 nanoparticles in water for anti-bacterial applications. J. Inorg. Organomet. Polym. Mater. 31, 3649–3656 (2021). https://doi.org/10.1007/s10904-021-01973-8

    Article  CAS  Google Scholar 

  6. F. Javed, S. Javed, M.A. Akram, M. Mujahid, M. Islam, A.S. Bhatti, Surface plasmon mediated optical properties of ZnO/Au/TiO2 nanoheterostructure rod arrays. Mater. Sci. Eng. B 231, 32–39 (2018). https://doi.org/10.1016/j.mseb.2018.08.001

    Article  CAS  Google Scholar 

  7. E.S.M. Mouele, S. Ngqoloda, S. Pescetelli, A.D. Carlo, M. Dinu, A. Vladescu, A.C. Parau, A. Agresti, M. Braic, C.J. Arendse, L.F. Petrik, Spin coating immobilisation of C-N-TiO2 Co-doped nano catalyst on glass and application for photocatalysis or as electron transporting layer for perovskite solar cells. Coatings 10, 1029 (2020). https://doi.org/10.3390/coatings10111029

    Article  CAS  Google Scholar 

  8. J. Singh, K. Sahu, A. Pandey, M. Kumar, T. Ghosh, B. Satpati, T. Som, S. Varma, D.K. Avasthi, S. Mohapatra, Atom beam sputtered Ag-TiO2 plasmonic nanocomposite thin films for photocatalytic applications. Appl. Surf. Sci. 41, 347–354 (2017). https://doi.org/10.1016/j.apsusc.2017.03.152

    Article  CAS  Google Scholar 

  9. O. Beldjebli, R. Bensaha, Y.S. Ocak, L. Amirache, R. Boukherroub, Synthesis and photocatalytic efficiency of sol-gel Al3+-doped TiO2 thin films: correlation between the structural, morphological and optical properties. Mater. Res. Express 6, 085036 (2019). https://doi.org/10.1088/2053-1591/ab1d36

    Article  CAS  Google Scholar 

  10. Y.F. Tu, S.Y. Huang, J.P. Sang, X.W. Zou, Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays. J. Alloys Compd. 482, 382–387 (2009). https://doi.org/10.1016/j.jallcom.2009.04.027

    Article  CAS  Google Scholar 

  11. M.S. Hassan, T. Amna, O.B. Yang, H.C. Kim, M.S. Khil, TiO2 nanofibers doped with rare earth elements and their photocatalytic activity. Ceram. Int. 38, 5925–5930 (2012). https://doi.org/10.1016/j.ceramint.2012.04.04

    Article  CAS  Google Scholar 

  12. T. Lavanyaa, M. Duttab, S. Ramaprabhua, K. Satheesh, Superior photocatalytic performance of graphene wrapped anatase/rutile mixed phase TiO2 nanofibers synthesized by a simple and facile route. J. Environ. Chem. Eng. 5, 494–503 (2017). https://doi.org/10.1016/j.jece.2016.12.025

    Article  CAS  Google Scholar 

  13. E.M. Baya, T.G. Lupeiko, L.E. Pustovayay, M.G. Volkova, Synthesis and photocatalytic properties of Sn–TiO2 nanomaterials. J. Adv. Dielect. 10, 2060018 (2020). https://doi.org/10.1142/S2010135X20600188

    Article  Google Scholar 

  14. X. Zhu, L. Pei, R. Zhu, Y. Jiao, R. Tang, W. Feng, Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci. Rep. 8, 12387 (2018). https://doi.org/10.1038/s41598-018-30050-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. F. Sayılkan, M. Asilturk, P. Tatar, N. Kiraz, S. Sener, E. Arpaç, H. Sayılkan, Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights. Mater. Res. Bull. 43, 127–134 (2008). https://doi.org/10.1016/j.materresbull.2007.02.012

    Article  CAS  Google Scholar 

  16. S. Ni, T. Zhou, Y. Zhu, Y. Cao, P. Yang, Sn4+-doped TiO2 nanorod array film with enhanced visible light photocatalytic activity. Bull. Mater. Sci. 41, 113 (2018). https://doi.org/10.1007/s12034-018-1629-8

    Article  CAS  Google Scholar 

  17. H. Bensouyad, H. Sedrati, H. Dehdouh, M. Brahimi, F. Abbas, H. Akkari, R. Bensaha, Structural, thermal and optical characterization of TiO2:ZrO2 thin films prepared by sol–gel method. Thin Solid Films 519, 96–100 (2010). https://doi.org/10.1016/j.tsf.2010.07.062

    Article  CAS  Google Scholar 

  18. T.D. Nguyen-Phan, V.H. Pham, J.S. Chung, M. Chhowalla, T. Asefa, W.J. Kim, E.W. Shin, Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials. Appl. Catal. A 473, 21–30 (2014). https://doi.org/10.1016/j.apcata.2013.12.030

    Article  CAS  Google Scholar 

  19. H.J. Lin, T.S. Yang, M.C. Wang, C.S. His, Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol–gel spin coating. J. Alloys Compd. 610, 478–485 (2014). https://doi.org/10.1016/j.jallcom.2014.05.053

    Article  CAS  Google Scholar 

  20. L. Alexander, H.P. Klug, Determination of crystallite size with the X ray spectrometer. Appl. Phys. 21, 137–142 (1950). https://doi.org/10.1063/1.1699612

    Article  CAS  Google Scholar 

  21. K. Mageshwari, R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Proc. 16, 337–343 (2013). https://doi.org/10.1016/j.mssp.2012.09.016

    Article  CAS  Google Scholar 

  22. A.M. Soylu, M. Polat, D.A. Erdogan, Z. Say, C. Yıldırım, O. Birer, E. Ozensoy, TiO2-Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Appl. Surf. Sci. 318, 142–149 (2014). https://doi.org/10.1016/j.apsusc.2014.04.082

    Article  CAS  Google Scholar 

  23. A. Golubovic, M. Scepanovic, A. Kremenovic, S. Askrabic, V. Berec, Z. Dohcevic-Mitrovic, Z.V. Popovic, Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J. Sol-Gel Sci. Technol. 49, 311–319 (2009). https://doi.org/10.1007/s10971-008-1872-3

    Article  CAS  Google Scholar 

  24. A.K. Tripathi, M.C. Mathpal, P. Kumar, M.K. Singh, M.A.G. Soler, A. Agarwal, Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J. Alloys Compd. 622, 37–47 (2015). https://doi.org/10.1016/j.jallcom.2014.09.218

    Article  CAS  Google Scholar 

  25. N.R. Mathews, E.R. Morales, M.A. Cortes-Jacome, J.A.T. Antonio, TiO2 thin films Influence of annealing temperature on structural, optical and photocatalytic properties. Sol. Energy 83, 1499–1508 (2009). https://doi.org/10.1016/j.solener.2009.04.008

    Article  CAS  Google Scholar 

  26. C.J. Brinker, R. Sehgal, S.L. Hietala, R. Deshpande, D.M. Smith, D. Loy, C.S. Ashley, Sol-Gel strategies for controlled porosity inorganic materials. J. Membr. Sci. 94, 85–102 (1994). https://doi.org/10.1016/0376-7388(93)E0129-8

    Article  CAS  Google Scholar 

  27. S. Mehraza, P. Konsongc, A. Talebd, N. Dokhanea, L. Sikong, Large scale and facile synthesis of Sn doped TiO2 aggregates using hydrothermal synthesis. Sol. Energy Mater. Sol. Cells 189, 254–262 (2019). https://doi.org/10.1016/j.solmat.2017.06.048

    Article  CAS  Google Scholar 

  28. L. Yuan, X. Weng, M. Zhou, Q. Zhang, L. Deng, Structural and visible-near infrared optical properties of Cr-doped TiO2 for colored cool pigments. Nanoscale Res. Lett. 12, 597 (2017). https://doi.org/10.1186/s11671-017-2365-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Yu, G. Wang, B. Cheng, M. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl. Catal. B 69, 171–180 (2007). https://doi.org/10.1016/j.apcatb.2006.06.022

    Article  CAS  Google Scholar 

  30. M. Sreemany, S. Sen, A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Mater. Chem. Phys. 83, 169–177 (2004). https://doi.org/10.1016/j.matchemphys.2003.09.030

    Article  CAS  Google Scholar 

  31. J.A.B. Pérez, M. Courel, M. Pal, F.P. Delgado, N.R. Mathews, Effect of ytterbium doping concentration on structural, optical and photocatalytic properties of TiO2 thin films. Ceram. Int. 43, 15777–15784 (2017). https://doi.org/10.1016/j.ceramint.2017.08.141

    Article  CAS  Google Scholar 

  32. A. Nakaruk, D. Ragazzon, C.C. Sorrell, Anatase–rutile transformation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films 518, 3735–3742 (2010). https://doi.org/10.1016/j.tsf.2009.10.109

    Article  CAS  Google Scholar 

  33. P.D. Bhange, S.V. Awate, R.S. Gholap, G.S. Gokavi, D.S. Bhange, Photocatalytic degradation of methylene blue on Sn-doped titania nanoparticles synthesized by solution combustion route. Mater. Res. Bull. 76, 264–272 (2016). https://doi.org/10.1016/j.materresbull.2015.12.041

    Article  CAS  Google Scholar 

  34. X. Zhu, S. Han, W. Feng, Q. Kong, Z. Dong, C. Wang, J. Lei, Q. Yi, The effect of heat treatment on the anatase–rutile phase transformation and photocatalytic activity of Sn-doped TiO2 nanomaterials. RSC Adv. 8, 14249 (2018). https://doi.org/10.1039/C8RA00766G

    Article  CAS  Google Scholar 

  35. A. Arunachalamn, S. Dhanapandian, C. Manoharan, Effect of Sn doping on the structural, optical and electrical properties of TiO2 films prepared by spray pyrolysis. Physica E 76, 35–46 (2016). https://doi.org/10.1016/j.physe.2015.09.048

    Article  CAS  Google Scholar 

  36. A.M. Selman, Z. Hassan, M. Husham, Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different PH values. Meas. 56, 155–162 (2014). https://doi.org/10.1016/j.measurement.2014.06.027

    Article  Google Scholar 

  37. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Room temperature photoluminescence of anatase and rutile TiO2 powders. J. Lumin. 146, 199–204 (2014). https://doi.org/10.1016/j.jlumin.2013.09.068

    Article  CAS  Google Scholar 

  38. X. Li, R. Xiong, G. Wei, Preparation and photocatalytic activity of nanoglued Sn-doped TiO2. J. Hazard. Mater. 164, 587–591 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.069

    Article  CAS  PubMed  Google Scholar 

  39. A. Bjelajac, R. Petrović, J. Vujancevic, K. Veltruska, V. Matolin, Z. Siketic, G. Provatas, M. Jaksic, G.E. Stan, G. Socol, I.N. Mihailescu, D. Janaćković, Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. J. Phys. Chem. Solids 147, 109609 (2020). https://doi.org/10.1016/j.jpcs.2020.109609

    Article  CAS  Google Scholar 

  40. S.E.H. Yeganeh, M. Kazazi, B.K. Kaleji, S.H. Kazemi, B. Hosseinzadeh, Electrophoretic deposition of Sn-doped TiO2 nanoparticles and its optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 29, 10841–10852 (2018). https://doi.org/10.1007/s10854-018-9155-4

    Article  CAS  Google Scholar 

  41. S.K. Zhenga, T.M. Wanga, W.C. Haob, R. Shen, Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation. Vacuum 65, 155–159 (2002). https://doi.org/10.1016/S0042-207X(01)00424-9

    Article  Google Scholar 

  42. M.K. Tariq, A. Riaz, R. Khan, A. Wajid, H. Haq, S. Javed, M.A. Akram, M. Islam, Comparative study of Ag, Sn or Zn doped TiO2 thin films for photocatalytic degradation of methylene blue and methyl orange. Mater. Res. Express 6, 106435 (2019). https://doi.org/10.1088/2053-1591/ab3efd

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouidad Beldjebli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beldjebli, O., Bensaha, R. & Panneerselvam, P. Effect of Both Sn Doping and Annealing Temperature on the Properties of Dip-Coated Nanostructured TiO2 Thin Films. J Inorg Organomet Polym 32, 1624–1636 (2022). https://doi.org/10.1007/s10904-022-02227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02227-x

Keywords

Navigation