Skip to main content
Log in

Nanoarchitectonics of Crosslinked Cu:ZnS-Lignocellulose Nanocomposite: A Potent Antifungal and Antisporulant System Against the Tea Pathogen Exobasidium vexans

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The objective of the present study was to synthesize Cu doped ZnS nanocore crosslinked with lignocellulose (represented as Cu:ZnS-lignocellulose nanocomposite) for antifungal action against the devastating tea blister blight pathogen Exobasidium vexans. The characteristic features of the nanocomposite were analyzed via different physicochemical techniques like FTIR, XRD, XPS, SEM, SEM–EDX, Elemental mapping, PCS, and UV-PL studies. The FTIR and XPS investigations revealed the crosslinking between lignocellulose and the Cu:ZnS. The presence of lignocellulose was seen to attribute a potent antifungal efficacy, also enhancing the stability of the resulting nanocomposite in aqueous suspensions. The antifungal efficacy confirmed through disk diffusion and broth dilution assays have a maximum zone of inhibition of 1.75 cm2 and a MIC50 of 0.05 mg/ml against E. vexans. Additionally, the antisporulant activity was evident as the basidiospores failed to germinate in presence of the Cu:ZnS-lignocellulose nanocomposites. This shows potential for stemming the rapid infectivity of E. vexans by achieving disease inhibition at the early stage. Finally, the comparison with two commonly used commercial fungicides (copper oxychloride and fluconazole) demonstrated > tenfold higher antifungal activity for Cu:ZnS-lignocellulose nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. R. Ghosh, S. Kundu, R. Majumder, M.P. Chowdhury, Hydrothermal synthesis and characterization of multifunctional ZnO nanomaterials. Mater. Today: Proc. 26, 77–81 (2020). https://doi.org/10.1016/j.matpr.2019.04.217

    Article  CAS  Google Scholar 

  2. J.R. Lamichhane, E. Osdaghi, F. Behlau, J. Köhl, J.B. Jones, J.N. Aubertot, Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 38, 28 (2018). https://doi.org/10.1007/s13593-018-0503-9

    Article  CAS  Google Scholar 

  3. N. Pariona, A.I. Mtz-Enriquez, D. Sánchez-Rangel, G. Carrión, F. Paraguay-Delgado, G. Rosas-Saito, Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 9, 18835–18843 (2019). https://doi.org/10.1039/C9RA03110C

    Article  CAS  Google Scholar 

  4. S. Chandra, N. Chakraborty, K. Panda, K. Acharya, Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiol. Biochem. 115, 298–307 (2017). https://doi.org/10.1016/j.plaphy.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  5. M. Anastassiadou, G. Bernasconi, A. Brancato, L. Carrasco Cabrera, L. Greco, S. Jarrah, A. Kazocina, R. Leuschner, J.O. Magrans, I. Miron, S. Nave, R. Pedersen, H. Reich, A. Rojas, A. Sacchi, M. Santos, A. Stanek, A. Theobald, B. Vagenende, A. Verani, Modification of the existing maximum residue levels for mandipropamid in kohlrabies and herbs and edible flowers. EFSA J. 18, e05958 (2020). https://doi.org/10.2903/j.efsa.2020.5958

    Article  Google Scholar 

  6. M. Young, A. Ozcan, M.E. Myers, E.G. Johnson, J.H. Graham, S. Santra, Multimodal generally recognized as safe ZnO/nanocopper composite: a novel antimicrobial material for the management of citrus phytopathogens. J. Agric. Food Chem. 66, 6604–6608 (2017). https://doi.org/10.1021/acs.jafc.7b02526

    Article  CAS  PubMed  Google Scholar 

  7. A.F. Oussou-Azo, T. Nakama, M. Nakamura, T. Futagami, M.D.C.M. Vestergaard, Antifungal potential of nanostructured crystalline copper and its oxide forms. Nanomaterials 10, 1003 (2020). https://doi.org/10.3390/nano10051003

    Article  CAS  PubMed Central  Google Scholar 

  8. S.K. Mani, M. Saroja, M. Venkatachalam, T. Rajamanickam, Antimicrobial activity and photocatalytic degradation properties of zinc sulfide nanoparticles synthesized by using plant extracts. J. Nanostruct. 8, 107–118 (2018). https://doi.org/10.22052/JNS.2018.02.001

    Article  CAS  Google Scholar 

  9. Z. Morshedtalab, G. Rahimi, A. Emami-Nejad, A. Farasat, A. Mohammadbeygi, N. Ghaedamini, M. Negahdary, Antibacterial assessment of zinc sulfide nanoparticles against Streptococcus pyogenes and Acinetobacter baumannii. Curr. Top. Med. Chem. 20, 1042–1055 (2020). https://doi.org/10.2174/1381612826666200406095246

    Article  CAS  PubMed  Google Scholar 

  10. M. Arshad, A. Qayyum, G.A. Shar, G.A. Soomro, A. Nazir, B. Munir, M. Iqbal, Zn-doped SiO2 nanoparticles preparation and characterization under the effect of various solvents: antibacterial, antifungal and photocatlytic performance evaluation. J. Photochem. Photobiol. B Biol. 185, 176–183 (2018). https://doi.org/10.1016/j.jphotobiol.2018.04.043

    Article  CAS  Google Scholar 

  11. S.A. Khan, F. Noreen, S. Kanwal, A. Iqbal, G. Hussain, Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C. 82, 46–59 (2018). https://doi.org/10.1016/j.msec.2017.08.071

    Article  CAS  Google Scholar 

  12. X. Li, X. Wu, T. Yuan, J. Zhu, Y. Yang, Influence of the iodine content of nitrogen-and iodine-doped carbon dots as a peroxidase mimetic nanozyme exhibiting antifungal activity against C. albicans. Biochem. Eng. J. 175, 108139 (2021). https://doi.org/10.1016/j.bej.2021.108139

    Article  CAS  Google Scholar 

  13. G.T. Vidyavathi, B.V. Kumar, A.V. Raghu, T. Aravinda, U. Hani, H.A. Murthy, A.H. Shridhar, Punica granatum pericarp extract catalyzed green chemistry approach for synthesizing novel ligand and its metal (II) complexes: Molecular docking/DNA interactions. J. Mol. Struct. 1249, 131656 (2022). https://doi.org/10.1016/j.molstruc.2021.131656

    Article  CAS  Google Scholar 

  14. K.V. Karthik, A.V. Raghu, K.R. Reddy, R. Ravishankar, M. Sangeeta, N.P. Shetti, C.V. Reddy, Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287, 132081 (2022). https://doi.org/10.1016/j.chemosphere.2021.132081

    Article  CAS  PubMed  Google Scholar 

  15. K. Kannan, D. Radhika, K.R. Reddy, A.V. Raghu, K.K. Sadasivuni, G. Palani, K. Gurushankar, Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Express. 2(1), 010014 (2021). https://doi.org/10.1088/2632-959X/abdd87

    Article  Google Scholar 

  16. K.R. Reddy, M.S. Jyothi, A.V. Raghu, V. Sadhu, S. Naveen, T.M. Aminabhavi, Nanocarbons-supported and polymers-supported titanium dioxide nanostructures as efficient photocatalysts for remediation of contaminated wastewater and hydrogen production, in Nanophotocatalysis and Environmental Applications (Springer, Cham, 2020), pp. 139–169

  17. S. Kumar, K.R. Reddy, C. Reddy, N.P. Shetti, V. Sadhu, M.V. Shankar, T.M. Aminabhavi, Metal nitrides and graphitic carbon nitrides as novel photocatalysts for hydrogen production and environmental remediation, in Nanostructured Materials for Environmental Applications (Springer, Cham, 2021), pp. 485–519. https://doi.org/10.1007/978-3-030-72076-6

  18. J.L. Hodala, D.J. Moon, K.R. Reddy, C.V. Reddy, T.N. Kumar, M.I. Ahamed, A.V. Raghu, Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis. Int. J. Hydrog 46(4), 3289–3301 (2021). https://doi.org/10.1016/j.ijhydene.2019.12.021

    Article  CAS  Google Scholar 

  19. A. Aradmehr, V. Javanbakht, A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: synthesis and characterization. Colloids Surf. A Physicochem. Eng. Asp. 600, 124952 (2020). https://doi.org/10.1016/j.colsurfa.2020.124952

    Article  CAS  Google Scholar 

  20. W. Zuo, M. Shahriari, M. Shahriari, M. Javadi, H. Mohebi, N. Abbasi, H. Ghaneialvar, Synthesis and application of Au NPs-chitosan nanocomposite in the treatment of acute myeloid leukemia in vitro and in vivo. Arab. J. Chem. 14, 102929 (2021). https://doi.org/10.1016/j.arabjc.2020.102929

    Article  CAS  Google Scholar 

  21. F. Lobo, A.R. Franco, E.M. Fernandes, R.L. Reis, An overview of the antimicrobial properties of lignocellulosic materials. Molecules 26, 1749 (2021). https://doi.org/10.3390/molecules26061749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Chaliha, B.K. Nath, P.K. Verma, E. Kalita, Synthesis of functionalized Cu:ZnS nanosystems and its antibacterial potential. Arab. J. Chem. 12, 515–524 (2019). https://doi.org/10.1016/j.arabjc.2016.05.002

    Article  CAS  Google Scholar 

  23. C. Chaliha, E. Kalita, P.K. Verma, Optimizing in vitro culture conditions for the biotrophic fungi exobasidium vexans through response surface methodology. Indian J. Microbiol. 60, 167–174 (2020). https://doi.org/10.1007/s12088-019-00846-6

    Article  CAS  PubMed  Google Scholar 

  24. S.K. Rai, J.K. Roy, A.K. Mukherjee, Application of poly (vinyl alcohol)-assisted silver nanoparticles immobilized β-keratinase composite as topical antibacterial and dehairing agent. J. Protein. Proteomics 11, 119–134 (2020). https://doi.org/10.1007/s42485-020-00034-x

    Article  CAS  Google Scholar 

  25. J. Chen, L. Wu, M. Lu, S. Lu, Z. Li, W. Ding, Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Front. Microbiol. 11, 365 (2020). https://doi.org/10.3389/fmicb.2020.00365

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Kuppayee, G.V. Nachiyar, V. Ramasamy, Synthesis and characterization of Cu2+ doped ZnS nanoparticles using TOPO and SHMP as capping agents. Appl. Surf. Sci. 257, 6779–6786 (2011). https://doi.org/10.1016/j.apsusc.2011.02.124

    Article  CAS  Google Scholar 

  27. F. Niu, M. Li, Q. Huang, X. Zhang, W. Pan, J. Yang, J. Li, The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr. Polym. 165, 197–204 (2017). https://doi.org/10.1016/j.carbpol.2017.02.048

    Article  CAS  PubMed  Google Scholar 

  28. W.Q. Xie, K.X. Yu, Y.X. Gong, Preparation of fluorescent and antibacterial nanocomposite films based on cellulose nanocrystals/ZnS quantum dots/polyvinyl alcohol. Cellulose 26, 2363–2373 (2019). https://doi.org/10.1007/s10570-019-02245-y

    Article  CAS  Google Scholar 

  29. A.V. Raghu, G.S. Gadaginamath, M. Priya, P. Seema, H.M. Jeong, T.M. Aminabhavi, Synthesis and characterization of novel polyurethanes based on N1, N4-bis [(4-hydroxyphenyl) methylene] succinohydrazide hard segment. J. Appl. Polym. Sci. 110(4), 2315–2320 (2008). https://doi.org/10.1002/app.27366

    Article  CAS  Google Scholar 

  30. A.V. Raghu, G.S. Gadaginamath, H.M. Jeong, N.T. Mathew, S.B. Halligudi, T.M. Aminabhavi, Synthesis and characterization of novel Schiff base polyurethanes. J. Appl. Polym. Sci. 113(5), 2747–2754 (2009). https://doi.org/10.1002/app.28257

    Article  CAS  Google Scholar 

  31. J.T. Orasugh, N.R. Saha, G. Sarkar, D. Rana, D. Mondal, S.K. Ghosh, D. Chattopadhyay, A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. Int. J. Biol. Macromol. 109, 1246–1252 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.123

    Article  CAS  PubMed  Google Scholar 

  32. W. Yang, E. Fortunati, F. Dominici, G. Giovanale, A. Mazzaglia, G.M. Balestra, J.M. Kenny, D. Puglia, Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int. J. Biol. Macromol. 89, 360–368 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.068

    Article  CAS  PubMed  Google Scholar 

  33. S. Reghuram, A. Arivarasan, R. Kalpana, R. Jayavel, CdSe and CdSe/ZnS quantum dots for the detection of C-reactive protein. J. Exp. Nanosci. 10, 787–802 (2015). https://doi.org/10.1080/17458080.2014.902542

    Article  CAS  Google Scholar 

  34. J.F. Luna-Martínez, D.B. Hernández-Uresti, M.E. Reyes-Melo, C.A. Guerrero-Salazar, V.A. González-González, S. Sepúlveda-Guzmán, Synthesis and optical characterization of ZnS–sodium carboxymethyl cellulose nanocomposite films. Carbohydr. Polym. 84, 566–570 (2011). https://doi.org/10.1016/j.carbpol.2010.12.021

    Article  CAS  Google Scholar 

  35. Y.W. Chen, H.V. Lee, Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: a source perspective. Int. J. Biol. Macromol. 107, 78–92 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.143

    Article  CAS  PubMed  Google Scholar 

  36. F. Li, J. Gao, Y. Li, X. He, L. Chen, Y. Zhang, Selective and sensitive determination of celastrol in traditional Chinese medicine based on molecularly imprinted polymers modified Mn-doped ZnS quantum dots optosensing materials. Colloids Surf. B Biointerfaces 190, 110929 (2020). https://doi.org/10.1016/j.colsurfb.2020.110929

    Article  CAS  PubMed  Google Scholar 

  37. A. Shehabeldine, H. El-Hamshary, M. Hasanin, A. El-Faham, M. Al-Sahly, Enhancing the antifungal activity of griseofulvin by incorporation a green biopolymer-based nanocomposite. Polymers 13, 542 (2021). https://doi.org/10.3390/polym13040542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. W. Lu, Y. Sun, H. Dai, P. Ni, S. Jiang, Y. Wang, Z. Li, Z. Li, Fabrication of cuprous sulfide nanorods supported on copper foam for nonenzymatic amperometric determination of glucose and hydrogen peroxide. RSC Adv. 6, 90732–90738 (2016). https://doi.org/10.1039/C6RA18641F

    Article  CAS  Google Scholar 

  39. X. Zhuang, H. Zhan, Y. Song, C. He, Y. Huang, X. Yin, C. Wu, Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC). Fuel 236, 960–974 (2019). https://doi.org/10.1016/j.fuel.2018.09.019

    Article  CAS  Google Scholar 

  40. L.P. Xiao, Z.J. Shi, F. Xu, R.C. Sun, Hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 118, 619–623 (2012). https://doi.org/10.1021/ef101745

    Article  CAS  PubMed  Google Scholar 

  41. H.K. Ardani, C. Imawan, W. Handayani, D. Djuhana, A. Harmoko, V. Fauzia, Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol. IOP Conf. Ser. Mater. Sci. Eng. 188, 012056 (2017)

    Article  Google Scholar 

  42. K. Sowndhararajan, S. Marimuthu, S. Manian, Biocontrol potential of phylloplane bacterium O chrobactrum anthropi BMO-111 against blister blight disease of tea. J. Appl. Microbiol. 114, 209–218 (2013). https://doi.org/10.1111/jam.12026

    Article  CAS  PubMed  Google Scholar 

  43. U.T. Khatoon, G.N. Rao, M.K. Mohan, A. Ramanaviciene, A. Ramanavicius, Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum 146, 259–265 (2017). https://doi.org/10.1016/j.vacuum.2017.10.003

    Article  CAS  Google Scholar 

  44. U.T. Khatoon, G.N. Rao, M.K. Mohan, A. Ramanaviciene, A. Ramanavicius, Comparative study of antifungal activity of silver and gold nanoparticles synthesized by facile chemical approach. J. Environ. Chem. Eng. 6(5), 5837–5844 (2018). https://doi.org/10.1016/j.jece.2018.08.009

    Article  CAS  Google Scholar 

  45. R. Chougale, D. Kasai, S. Nayak, S. Masti, A. Nasalapure, A.V. Raghu, Design of eco-friendly PVA/TiO2-based nanocomposites and their antifungal activity study. Green Mater. 8(1), 40–48 (2019). https://doi.org/10.1680/jgrma.19.00002

    Article  Google Scholar 

  46. C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11(5), 2804–2837 (2021). https://doi.org/10.1039/D0RA09941D

    Article  CAS  Google Scholar 

  47. A.T. Babu, M. Sebastian, O. Manaf, R. Antony, Heterostructured nanocomposites of Ag doped Fe3O4 embedded in ZnO for antibacterial applications and catalytic conversion of hazardous wastes. J. Inorg. Organomet. Polym. Mater. 30(6), 1944–1955 (2020). https://doi.org/10.1007/s10904-019-01366-y

    Article  CAS  Google Scholar 

  48. D. Wang, B. Zhang, L.F. Xu, L.N. Huang, Construction of a new In (III)-based coordination polymer for selective luminescent detection of Cr2O72− and anti-bacterial protective effect on Staphylococcus aureus infection after missed abortion. Bull. Chem. Soc. Jpn. 93(1), 92–98 (2020). https://doi.org/10.1246/bcsj.20190206

    Article  CAS  Google Scholar 

  49. E. Priyadarshini, S.S. Priyadarshini, B.G. Cousins, N. Pradhan, Metal-fungus interaction: review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 274, 129976 (2021). https://doi.org/10.1016/j.chemosphere.2021.129976

    Article  CAS  PubMed  Google Scholar 

  50. P.S.S. Selvam, G.S. Chinnadurai, D. Ganesan, P. Perumal, V. Kandan, Cadmium oxide-zinc oxide nanocomposites synthesized using waste eggshell membrane and its in-vitro assessments of the antimicrobial activities and minimum inhibitory concentration. J. Inorg. Organomet. Polym. Mater. 31(2), 816–835 (2021). https://doi.org/10.1007/s10904-020-01688-2

    Article  CAS  Google Scholar 

  51. G. Mamatha, P. Sowmya, D. Madhuri, N.M. Babu, D.S. Kumar, G.V. Charan, K. Madhukar, Antimicrobial cellulose nanocomposite films with in situ generations of bimetallic (Ag and Cu) nanoparticles using Vitex negundo leaves extract. J. Inorg. Organomet. Polym. Mater. 31(2), 802–815 (2021). https://doi.org/10.1007/s10904-020-01819-9

    Article  CAS  Google Scholar 

  52. G.L. Vanti, S. Masaphy, M. Kurjogi, S. Chakrasali, V.B. Nargund, Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. Int. J. Biol. Macromol. 156, 1387–1395 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.179

    Article  CAS  PubMed  Google Scholar 

  53. L.A. Hermida-Montero, N. Pariona, A.I. Mtz-Enriquez, G. Carrión, F. Paraguay-Delgado, G. Rosas-Saito, Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. J. Hazard. Mater. 380, 120850 (2019). https://doi.org/10.1016/j.jhazmat.2019.120850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge DBT, Govt. of India, for the Twinning Research Grant (Grant No. BT/427/NE/TBP/2013). Author CC would like to acknowledge DST, Govt. of India for her DST INSPIRE Junior Research Fellowship (IF-150964). The authors thank Ananda Tea Estate, North Lakhimpur District, Assam, India, for providing the blister blight infected tea leaf samples used in the study.

Funding

This work was supported by DST INSPIRE, Govt. of India (Grant No. IF-150964) and DBT, Govt. of India, Twinning Research Grant (Grant No. BT/427/NE/TBP/2013).

Author information

Authors and Affiliations

Authors

Contributions

CC: Methodology, Investigation, Formal analysis, Data curation, Writing—original draft. JB: Formal analysis, Data curation, Writing—review and editing. EK: Conceptualization, Methodology, Supervision, Verification, Writing—review and editing, Project administration, Funding acquisition.

Corresponding author

Correspondence to Eeshan Kalita.

Ethics declarations

Conflict of interest

The authors CC, JB, and EK certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approvals

The authors CC, JB, and EK have seen and approved the manuscript, and it hasn’t been accepted and published elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaliha, C., Baruah, J. & Kalita, E. Nanoarchitectonics of Crosslinked Cu:ZnS-Lignocellulose Nanocomposite: A Potent Antifungal and Antisporulant System Against the Tea Pathogen Exobasidium vexans. J Inorg Organomet Polym 32, 954–966 (2022). https://doi.org/10.1007/s10904-022-02225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02225-z

Keywords

Navigation