Skip to main content

Advertisement

Log in

Comparison of Effects of Calcium and Magnesium Doping on the Structure and Biological Properties of NaTaO3 Film on Tantalum

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Tantalum is widely used in hip joint replacement and knee joint repair, but its clinical application is limited due to its poor biological activity and weak ability to promote new bone formation. Ca and Mg ions are thought to be involved in bone metabolism and play an important physiological role in the angiogenesis, growth, and mineralization of bone tissue. In this work, NaTaO3 films doped with Ca2+ and Mg2+ were prepared by hydrothermal synthesis and molten salt method. The doping amounts of Ca2+ doped at 450, 550, 650 and 750 °C were 0.59, 3.44, 32.75 and 29.88 at%, and that of Mg2+ doped at 300, 350, 400, 450, 500, 550 and 650 °C were 0.62, 1.03, 1.54, 20.12, 21.38, 14.37 and 0.74 at%, respectively. Ca2+ and Mg2+ are evenly incorporated into NaTaO3 and cause the change of crystal plane spacing without any significant changes of morphologies below 550 and 400 °C respectively. XPS shows that the cations are the A-site substitution of perovskite structure (ABO3). According to the morphology and composition analysis of Ca-incorporated samples and Mg-incorporated samples, the optimal preparation temperature of them is 550 °C and 400 °C, respectively. The results show that for “550 °C-Ca” and “400 °C-Mg” the hydrophilicity is 13.9° and 96.1°, the roughness is 114.3 and 54.3 nm, the doping ion concentration of Ca and Mg is 3.44 and 1.54 at%, and the 7-day ICP results is 69.8 and 1.4 ppm, respectively. In addition, cell proliferation experiments and cell morphology related to biological activity and osteogenic properties are discussed, and it is found that the performance of “550 °C-Ca” is better than “400 °C-Mg”. Ca2+–NaTaO3 is a promising implantable material that will be extensive used in bone implants, joint replacements and dental implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Miyazaki, H.M. Kim, F. Miyaji, T. Kokubo, H. Kato, T. Nakamura, Bioactive tantalum metal prepared by NaOH treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 50(1), 35–42 (2015)

    Article  Google Scholar 

  2. V.K. Balla, S. Bose, N.M. Davies, A. Bandyopadhyay, Tantalum—a bioactive metal for implants. JOM 62, 61–64 (2010)

    Article  CAS  Google Scholar 

  3. I. Putrantyo, N. Anilbhai, R. Vanjani, B. De Vega, Tantalum as a novel biomaterial for bone implant: a literature review. Trans Tech Publ 52, 55–65 (2021)

    CAS  Google Scholar 

  4. X. Wang, B. Ning, X. Pei, Tantalum and its derivatives in orthopedic and dental implants: osteogenesis and antibacterial properties. Colloids Surf. B 208, 112055 (2021)

    Article  CAS  Google Scholar 

  5. C. Pan, Y. Hu, Z. Gong, Y. Yang, W. Ye, Improved blood compatibility and endothelialization of titanium oxide nanotube arrays on titanium surface by zinc doping. ACS Biomater. 6(4), 2072–2083 (2020)

    Article  CAS  Google Scholar 

  6. D. GÖMpel, M.N. Tahir, M. PanthÖFer, E. Mugnaioli, R. Brandscheid, U. Kolb, W. Tremel, Facile hydrothermal synthesis of crystalline Ta2O5 nanorods, MTaO3 (M = H, Na, K, Rb) nanoparticles, and their photocatalytic behaviour. J. Mater. Chem. A 2, 8033–8040 (2014)

    Article  Google Scholar 

  7. T.W. Sun, Y.J. Zhu, One-step solvothermal synthesis of strontium-doped ultralong hydroxyapatite nanowires. Chin. J. Inorg. Mater. 35(6), 398 (2019)

    Google Scholar 

  8. A. Hoppe, N. Güldal, A.R. Bo Cc Accini, A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32(11), 2757–2774 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. C. Wang, X. Li, C. Tong, A. Cai, H. Guo, H. Yin, Preparation, in vitro bioactivity and osteoblast cell response of Ca–Ta2O5 nanorods on tantalum. Surf. Coat. Technol. 391, 125701 (2020)

    Article  CAS  Google Scholar 

  10. N. Ren, J. Li, J. Qiu, Y. Sang, H. Jiang, R.I. Boughton, L. Huang, W. Huang, H. Liu, Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. Small 10(15), 3169–3180 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. L. Wei, Z. Yan, X. Ma, T. Geng, H. Wu, Z. Li, Mg–MOF-74/MgF2 composite coating for improving the properties of magnesium alloy implants: hydrophilicity and corrosion resistance. Materials 11(3), 396 (2018)

    Article  Google Scholar 

  12. L. Zhang, J. Thomas, Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1), 66–80 (2009)

    Article  CAS  Google Scholar 

  13. G. Acik, Fabrication of polypropylene fibers possessing quaternized ammonium salt based on the combination of CuAAC click chemistry and electrospinning. React. Funct. Polym. 168, 105035 (2021)

    Article  CAS  Google Scholar 

  14. C. Reitz, K. Brezesinski, J. Haetge, J. Perlich, T. Brezesinski, Nanocrystalline NaTaO3 thin film materials with ordered 3D mesoporous and nanopillar-like structures through PIB-b-PEO polymer templating: Towards high-performance UV-light photocatalysts. RSC Adv. 2(12), 5130–5133 (2012)

    Article  CAS  Google Scholar 

  15. H.W. Kang, S.N. Lim, S.B. Park, A.-H.A. Park, H2 evolution under visible light irradiation on La and Cr co-doped NaTaO3 prepared by spray pyrolysis from polymeric precursor. Int. J. Hydrog. 38(15), 6323–6334 (2013)

    Article  CAS  Google Scholar 

  16. S. Kalaivani, R.K. Singh, V. Ganesan, S. Kannan, Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal. J. Mater. Chem. B 2(7), 846–858 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Q. Huang, X. Li, T. Liu, H. Wu, X. Liu, Q. Feng, Y. Liu, Enhanced SaOS-2 cell adhesion, proliferation and differentiation on Mg-incorporated micro/ nano-topographical TiO2 coatings. Appl. Surf. Sci. 447(31), 767–776 (2018)

    Article  CAS  Google Scholar 

  18. H. He, W. Yao, C. Wang, X. Feng, X. Lu, Morphology-controlled synthesis of sodium hexa-titanate nanowhiskers by changing evaporation rate of NaCl–KCl molten salts. Ind. Eng. Chem. Res. 52(43), 15034–15040 (2013)

    Article  CAS  Google Scholar 

  19. Y. Mao, T.J. Park, F. Zhang, H. Zhou, S. Wong, Environmentally friendly methodologies of nanostructure synthesis. Small 3(7), 1122–1139 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. S. Takaya, Y. Lu, S. Guan, K. Miyazawa, H. Yoshida, H. Asanuma, Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity. Surf. Coat. Technol. 275(15), 260–263 (2015)

    Article  CAS  Google Scholar 

  21. L. Chang, X. Lu, Y. Gang, F. Xin, Q. Zhang, Z. Xu, Role of an intermediate phase in solid state reaction of hydrous titanium oxide with potassium carbonate. Mater. Chem. Phys. 94(2-3), 401–407 (2005)

    Article  Google Scholar 

  22. D.F.K. Hennings, B.S. Schreinemacher, H. Schreinemacher, Solid-state preparation of BaTiO3‐based dielectrics, using ultrafine raw materials. J. Am. Ceram. Soc. 84(12), 2777–2782 (2010)

    Article  Google Scholar 

  23. L. Dan, Y. Yongke, Z. Heping, Synthesis of micron-scale platelet BaTiO3. J. Am. Ceram. Soc. 90(4), 1323–1326 (2010)

    Google Scholar 

  24. K. Teshima, S.H. Lee, S. Murakoshi, S. Suzuki, K. Yubuta, T. Shishido, M. Endo, S. Oishi, Highly crystalline, idiomorphic Na2Ti6O13 whiskers grown from a NaCl Flux at a relatively low temperature. Eur. J. Inorg. Chem. 2021(19), 2936–2940 (2010)

    Article  Google Scholar 

  25. T. Miyazaki, H.M. Kim, F. Miyaji, T. Kokubo, H. Kato, T. Nakamura, Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res A 50(1), 35–42 (2000)

    Article  CAS  Google Scholar 

  26. Y. Zhao, M. Zhang, L. Yang, J. Zhang, Z. Wang, Ultraviolet photodetector based on NaTaO3/ZnO composite with enhanced photoelectric performance. Optoelectronics Letters 17(2), 75–79 (2021)

    Article  Google Scholar 

  27. B. Jia, Y. Mei, L. Cheng, J. Zhou, L. Zhang, Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl. Mater. Interfaces 4(6), 2897 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. W. Liu, Z. Yan, X. Ma, T. Geng, H. Wu, Z. Li, Mg–MOF-74/MgF2 composite coating for improving the properties of magnesium alloy implants: hydrophilicity and corrosion resistance. Materials 11(3), 396 (2018)

    Article  PubMed Central  Google Scholar 

  29. C.C. Mohan, P. Sreerekha, V. Divyarani, S. Nair, K. Chennazhi, D. Menon, Influence of titania nanotopography on human vascular cell functionality and its proliferation in vitro. J. Mater. 22(4), 1326–1340 (2012)

    CAS  Google Scholar 

  30. L.L. Xu, C. Li, W.D. Shi, J.G. Guan, Structure and visible light photocatalytic hydrogen evolution activities of Cu,W Co doped NaTaO3. Chem J Chin Univ 33, 2537–2543 (2012)

    CAS  Google Scholar 

  31. Y.U. Ji, X.Q. Liu, Comparative study on LiMxMn(2–x)O4(M = Li,Na,Tl) cathode materials for li-ion batteries. J. Nanchang Uni. 52, 01 (2012)

    Google Scholar 

  32. R. Maleque, M.D. Rahaman, A.K.M. Akther Hossain, Influence of Ca2+ ions substitution on structural, microstructural, electrical and magnetic properties of Mg0.2xCaxMn0.5Zn0.3Fe2O4 ferrites. J. Mater. Sci. Mater. Electron. 28, 13185–13200 (2017)

    Article  CAS  Google Scholar 

  33. D. GÖMpel, M.N. Tahir, M. PanthÖFer, E. Mugnaioli, R. Brandscheid, U. Kolb, W. Tremel, Facile hydrothermal synthesis of crystalline Ta2O5 nanorods, MTaO3 (M = H, Na, K, Rb) nanoparticles, and their photocatalytic behaviour. J. Mater. Chem. A 2, 8033–8040 (2014)

    Article  Google Scholar 

  34. M.M. Hoque, A. Barua, A. Dutta, S.K. Dey, T.P. Sinha, S. Kumar, Study on the structural, spectroscopic, and dielectric properties of 1:2 ordered Ca3(B′Ta2)O9 (B′ = Mg and Zn). Ionics 23, 471–483 (2016)

    Article  Google Scholar 

  35. A. Dutta, T.P. Sinha, Structural and dielectric properties of A(Fe1/2Ta1/2)O3[A = Ba, Sr, Ca]. Mater. Res. Bull. 46(4), 518–524 (2011)

    Article  CAS  Google Scholar 

  36. G.L. Liu, Y.M. Zhu, X. Fang, W.J. Zhang, Preparation of MgO with different nanoparticle sizes and their infrared wave absorptivities. Dongbei J. Nor. Univ. 37(6), 1192–1195 (2010)

    Google Scholar 

  37. Y.H. Ochoa-Muoz, J.E. Rodríguez-Páez, R.M.d. Gutiérrez, Structural and optical study of perovskite nanoparticles MSnO3 (M= Ba, Zn, Ca) obtained by a wet chemical route. Mater. Chem. Phys. 266, 124557 (2021)

    Article  Google Scholar 

  38. H. Tüysüz, C.K. Chan, Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting. Nano Energy 2(1), 116–123 (2013)

    Article  Google Scholar 

  39. H. Wang, F. Liu, X. Xiong, S. Ke, X. Zeng, P. Lin, Structure, corrosion resistance and in vitro bioactivity of Ca and P containing TiO2 coating fabricated on NiTi alloy by plasma electrolytic oxidation. Appl. Surf. Sci. 356, 1234–1243 (2015)

    Article  CAS  Google Scholar 

  40. X. Li, Q. Huang, L. Ling, W. Zhu, T.A. Elkhooly, L. Yong, Q. Feng, Q. Li, S. Zhou, L. Yin, Reduced inflammatory response by incorporating magnesium into porous TiO2 coating on titanium substrate. Colloids Surf. B 171, 276–284 (2018)

    Article  CAS  Google Scholar 

  41. J.W. Park, T. Hanawa, J.H. Chung, J. Lacerda, The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants. Int. J. Nanomed. 14, 5697–5711 (2020)

    Article  Google Scholar 

  42. E. Sugawara, H. Nikaido, Pore-forming activity of OmpA protein of Escherichia coli. J. Biol. Chem. 267, 2507 (1992)

    Article  CAS  PubMed  Google Scholar 

  43. P.C. Schiller, G.D. ’Ippolito, W. Balkan, B.A. Roos, G.A. Howard, Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone 28(4), 362–369 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. R. Civitelli, Cell–cell communication in the osteoblast/osteocyte lineage. Arch. Biochem. Biophys. 473(2), 188–192 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO.51801117, No.51902192), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 21JK0544), Science and Technology Project of Weiyang District of Xi’an (NO. 201706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuicui Wang.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, C., Yin, H. et al. Comparison of Effects of Calcium and Magnesium Doping on the Structure and Biological Properties of NaTaO3 Film on Tantalum. J Inorg Organomet Polym 32, 1448–1458 (2022). https://doi.org/10.1007/s10904-021-02209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02209-5

Keywords

Navigation