Skip to main content
Log in

Nitrate Ion Sensing Properties of Peripheral 3,4,5-Trimethoxyphenoxy and Chlorine Substituted Metallo and Metal-free Phthalocyanines

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the capability of novel peripheral metal-free and metallo (2H, Fe, Co, Zn) mono nuclear phthalocyanines coated quartz crystal microbalance (QCM) sensor for the detection of nitrate ions in water. Although the synthesis of phthalocyanines is usually difficult and expensive, the novel phthalocyanine complexes are planned to be used as nitrate ion detectors in water because their synthesis is easy and cheap. The starting compound and the phthalocyanines were characterized by elemental analyses, FT-IR, UV–vis 1H-NMR, 13C-NMR and MALDI-TOF mass spectral data. The effect of metals on spectroscopic properties and aggregation behaviours of these novel phthalocyanines were investigated in different solvents. From nitrate ion detection tests, it was observed that the 2(3),9(10),16(17),23(24)-tetrachloro-2(3),9(10),16(17),23(24)-tetrakis(3,4,5-trimethoxyphen-oxy)phthalocyaninatozinc(II) functionalized sensor exhibits a low detection limit of 0.08 mg/mL with a rapid response within 15–22 s, which is superior to most of the commonly used methods. Our study provides a new strategy for rapid, and sensitive, detection of nitrates, and is promising for real-time and in-situ water quality monitoring. In addition, the nitrate ion adsorption kinetics of these compounds was also modelled according to three different kinetic models, namely pseudo first order kinetic model, Elovich model and interparticle diffusion kinetic model. It was observed that the adsorption kinetics obeys to the first order model for low concentrations of nitrate ions, while the Elovich model is the most appropriate to model nitrate ions adsorption for high concentration of nitrate ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.M. Fan, V.E. Steinberg, Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 23(1), 35–43 (1996). https://doi.org/10.1006/rtph.1996.0006

    Article  CAS  PubMed  Google Scholar 

  2. R.A. Al-Okab, A.A. Syed, Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta 72(4), 1239–1247 (2007). https://doi.org/10.1016/j.talanta.2007.01.027

    Article  CAS  PubMed  Google Scholar 

  3. T.E. Arbuckle, G.J. Sherman, P.N. Corey, D. Walters, B. Lo, Water nitrates and CNS birth defects: a population-based case-control study. Arch. Environ. Health 43(2), 162–167 (1988). https://doi.org/10.1080/00039896.1988.9935846

    Article  CAS  PubMed  Google Scholar 

  4. B.C.K. Choi, N-NFrROSO compounds and human cancer: a molecular epidemiologic approach. Am. J. Epidemiol. 121(5), 737–743 (1985). https://doi.org/10.1093/aje/121.5.737

    Article  CAS  PubMed  Google Scholar 

  5. W.L. Daniel, M.S. Han, J.-S. Lee, C.A. Mirkin, Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc. 131(18), 6362–6363 (2009). https://doi.org/10.1021/ja901609k

    Article  CAS  PubMed  Google Scholar 

  6. K.M. Miranda, M.G. Espey, D.A. Wink, A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5(1), 62–71 (2001). https://doi.org/10.1006/niox.2000.0319

    Article  CAS  PubMed  Google Scholar 

  7. A. Dudwadkar, N. Shenoy, J.M. Joshi, S.D. Kumar, H. Rao, A.V.R. Reddy, Application of ion chromatography for the determination of nitrate in process streams of thermal denitration plant. Sep. Sci. Technol. 48(16), 2425–2430 (2013). https://doi.org/10.1080/01496395.2013.807831

    Article  CAS  Google Scholar 

  8. R. Guidelli, F. Pergola, G. Raspi, Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media. Anal. Chem. 44(4), 745–755 (1972). https://doi.org/10.1021/ac60312a018

    Article  CAS  PubMed  Google Scholar 

  9. J. Liang, Y. Zheng, Z. Liu, Nanowire-based Cu electrode as electrochemical sensor for detection of nitrate in water. Sens. Actuators B 232, 336–344 (2016). https://doi.org/10.1016/j.snb.2016.03.145

    Article  CAS  Google Scholar 

  10. M. Bertotti, D. Pletcher, Amperometric determination of nitrite via reaction with iodide using microelectrodes. Anal. Chim. Acta 337, 49–55 (1997)

    Article  CAS  Google Scholar 

  11. M. Badea, A. Amine, G. Palleschi, D. Moscone, G. Volpe, A. Curulli, New electrochemical sensors for detection of nitrites and nitrates. J. Electroanal. Chem. 509(1), 66–72 (2001). https://doi.org/10.1016/S0022-0728(01)00358-8

    Article  CAS  Google Scholar 

  12. M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A 269, 79–90 (2018). https://doi.org/10.1016/j.sna.2017.11.022

    Article  CAS  Google Scholar 

  13. G. Högg, G. Steiner, K. Cammann, Development of a sensor card with integrated reference for the detection of nitrate. Sens. Actuators B 19(1), 376–379 (1994). https://doi.org/10.1016/0925-4005(93)01001-K

    Article  Google Scholar 

  14. M.E.E. Alahi, L. Xie, S. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Industr. Electron. 64(9), 7333–7341 (2017). https://doi.org/10.1109/TIE.2017.2696508

    Article  Google Scholar 

  15. S. Shahnia, H. Ebendorff-Heidepriem, D. Evans, S. Afshar, A fibre-optic platform for sensing nitrate using conducting polymers. Sensors (2021). https://doi.org/10.3390/s21010138

    Article  Google Scholar 

  16. R. Lumpp, J. Reichert, H.J. Ache, An optical sensor for the detection of nitrate. Sens. Actuators B 7(1), 473–475 (1992). https://doi.org/10.1016/0925-4005(92)80346-Y

    Article  CAS  Google Scholar 

  17. X. Chen, H. Pu, Z. Fu, X. Sui, J. Chang, J. Chen, S. Mao, Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors. Environ. Sci. Nano 5(8), 1990–1999 (2018). https://doi.org/10.1039/C8EN00588E

    Article  CAS  Google Scholar 

  18. W. Xuejiang, S.V. Dzyadevych, J.-M. Chovelon, N.J. Renault, C. Ling, X. Siqing, Z. Jianfu, Conductometric nitrate biosensor based on methyl viologen/Nafion/nitrate reductase interdigitated electrodes. Talanta 69(2), 450–455 (2006). https://doi.org/10.1016/j.talanta.2005.10.014

    Article  CAS  PubMed  Google Scholar 

  19. M.E.E. Alahi, S.C. Mukhopadhyay, L. Burkitt, Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring. Sens. Actuators B 259, 753–761 (2018). https://doi.org/10.1016/j.snb.2017.12.104

    Article  CAS  Google Scholar 

  20. S.M. Shariar, T. Hinoue, Simultaneous voltammetric determination of nitrate and nitrite ions using a copper electrode pretreated by dissolution/redeposition. Anal. Sci. 26(11), 1173–1179 (2010). https://doi.org/10.2116/analsci.26.1173

    Article  CAS  PubMed  Google Scholar 

  21. A. Jang, Z. Zou, K.K. Lee, C.H. Ahn, P.L. Bishop, Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd(II) in water. Talanta 83(1), 1–8 (2010). https://doi.org/10.1016/j.talanta.2010.07.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. Suvarnaphaet, S. Pechprasarn, Graphene-based materials for biosensors: a review. Sensors (2017). https://doi.org/10.3390/s17102161

    Article  PubMed  PubMed Central  Google Scholar 

  23. S.J. Rowley-Neale, E.P. Randviir, A.S. Abo Dena, C.E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 10, 218–226 (2018). https://doi.org/10.1016/j.apmt.2017.11.010

    Article  Google Scholar 

  24. W. Tang, J. Ping, K. Fan, Y. Wang, X. Luo, Y. Ying, J. Wu, Q. Zhou, All-solid-state nitrate-selective electrode and its application in drinking water. Electrochim. Acta 81, 186–190 (2012). https://doi.org/10.1016/j.electacta.2012.07.073

    Article  CAS  Google Scholar 

  25. R.-I. Stefan-van Staden, M. Mincu, J.F. van Staden, L.A. Gugoasa, Molecular recognition of nitrites and nitrates in water samples using graphene-based stochastic microsensors. Anal. Chem. 90(16), 9997–10000 (2018). https://doi.org/10.1021/acs.analchem.8b02467

    Article  CAS  PubMed  Google Scholar 

  26. G. de la Torre, M. Nicolau, T. Torres, Chapter 1—phthalocyanines: synthesis, supramolecular organization, and physical properties, in Supramolecular Photosensitive and Electroactive Materials. ed. by H.S. Nalwa (Academic Press, San Diego, 2001), pp. 1–111

    Google Scholar 

  27. G. de la Torre, C.G. Claessens, T. Torres, Phthalocyanines: old dyes, new materials. Putt. Color Nanotechnol. 20, 2000–2015 (2007). https://doi.org/10.1039/B614234F

    Article  Google Scholar 

  28. D. Wöhrle, G. Schnurpfeil, S. Makarov, A. Kazarin, O. Suvorova, Practical applications of phthalocyanines—from dyes and pigments to materials for optical, electronic and photo-electronic devices. Macroheterocycles 5, 191–202 (2012). https://doi.org/10.6060/mhc2012.120990w

    Article  CAS  Google Scholar 

  29. Petergregory, Industrial applications of phthalocyanines. J. Porphyrins Phthalocyanines (2012). https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4%3c432::AID-JPP254%3e3.0.CO;2-N

    Article  Google Scholar 

  30. Y. Zhang, J.F. Lovell, Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol (2017). https://doi.org/10.1002/wnan.1420

    Article  PubMed  PubMed Central  Google Scholar 

  31. Y. Yılmaz, M. Kasım Şener, İ Erden, U. Avcıata, Derivatization and in situ metallation of phthalocyanines using click chemistry. Polyhedron 28(16), 3419–3424 (2009). https://doi.org/10.1016/j.poly.2009.07.033

    Article  CAS  Google Scholar 

  32. A.M. Schmidt, M.J.F. Calvete, Phthalocyanines: an old dog can still have new (photo)tricks! Molecules 26(9), 2823 (2021)

    Article  CAS  Google Scholar 

  33. J. Chen, N. Chen, J. Huang, J. Wang, M. Huang, Derivatizable phthalocyanine with single carboxyl group: synthesis and purification. Inorg. Chem. Commun. 9, 313–315 (2006). https://doi.org/10.1016/j.inoche.2005.12.002

    Article  CAS  Google Scholar 

  34. A. Snow, Phthalocyanine aggregation. Porphyrin Handbook 17, 129–176 (2003). https://doi.org/10.1016/B978-0-08-092391-8.50009-1

    Article  CAS  Google Scholar 

  35. C. Jing, R. Wang, H. Ou, A. Li, Y. An, S. Guo, L. Shi, Axial modification inhibited H-aggregation of phthalocyanines in polymeric micelles for enhanced PDT efficacy. Chem. Commun. 54(32), 3985–3988 (2018). https://doi.org/10.1039/C7CC09954A

    Article  CAS  Google Scholar 

  36. M.Á. Revuelta-Maza, T. Torres, T. Gdl, Synthesis and aggregation studies of functional binaphthyl-bridged chiral phthalocyanines. Org. Lett. 21(20), 8183–8186 (2019). https://doi.org/10.1021/acs.orglett.9b02718

    Article  CAS  PubMed  Google Scholar 

  37. D. Zhang, M. Zhu, L. Zhao, J. Zhang, K. Wang, D. Qi, Y. Zhou, Y. Bian, J. Jiang, Ratiometric fluorescent detection of Pb2+ by FRET-based phthalocyanine-porphyrin dyads. Inorg. Chem. 56(23), 14533–14539 (2017). https://doi.org/10.1021/acs.inorgchem.7b02261

    Article  CAS  PubMed  Google Scholar 

  38. V. Sajjan, S. Aralekallu, M. Nemakal, M. Palanna, C.P.K. Prabhu, K.S. Lokesh, Nanomolar detection of lead using electrochemical methods based on a novel phthalocyanine. Inorg. Chim. Acta 506, 119564 (2020). https://doi.org/10.1016/j.ica.2020.119564

    Article  CAS  Google Scholar 

  39. A. Beduoğlu, A.M. Sevim, A. Koca, A. Altındal, Z. Altuntaş Bayır, Thiazole-substituted non-symmetrical metallophthalocyanines: synthesis, characterization, electrochemical and heavy metal ion sensing properties. New J. Chem. 44(14), 5201–5210 (2020). https://doi.org/10.1039/D0NJ00466A

    Article  Google Scholar 

  40. N. Can, B.C. Ömür, A. Altındal, Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sens. Actuators B 237, 953–961 (2016). https://doi.org/10.1016/j.snb.2016.07.026

    Article  CAS  Google Scholar 

  41. J. Deng, B. Wang, Y. Shi, Q. Song, A. Wang, L. Hao, B. Luo, X. Li, Z. Wang, F. Wang, L.J. Zhi, Poly (zinc phthalocyanine) nanoribbons and their application in the high-sensitive detection of lead ions. Macromol. Chem. Phys. 213(10–11), 1051–1059 (2012). https://doi.org/10.1002/macp.201100613

    Article  CAS  Google Scholar 

  42. D. Gounden, S. Khene, N. Nombona, Electroanalytical detection of heavy metals using metallophthalocyanine and silica-coated iron oxide composites. Chem. Pap. 72(12), 3043–3056 (2018). https://doi.org/10.1007/s11696-018-0545-0

    Article  CAS  Google Scholar 

  43. E. Hande Alici, A. Günsel, M. Akin, A.T. Bilgiçli, G. Arabaci, M. Nilüfer Yarasir, Synthesis, characterization, antioxidant and antibacterial properties of non-peripherally and peripherally tetra-substituted phthalocyanines. J. Coord. Chem. 71(19), 3077–3089 (2018). https://doi.org/10.1080/00958972.2018.1511778

    Article  CAS  Google Scholar 

  44. S. Şahin, S. Altun, A. Altındal, Z. Odabaş, Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties. Sens. Actuators B 206, 601–608 (2015). https://doi.org/10.1016/j.snb.2014.09.110

    Article  CAS  Google Scholar 

  45. M. Pişkin, N. Can, Z. Odabaş, A. Altındal, Toluene vapor sensing characteristics of novel copper(II), indium(III), mono-lutetium(III) and tin(IV) phthalocyanines substituted with 2,6-dimethoxyphenoxy bioactive moieties. J. Porphyrins Phthalocyanines 22(01n03), 189–197 (2018). https://doi.org/10.1142/S1088424617500900

    Article  CAS  Google Scholar 

  46. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155(2), 206–222 (1959). https://doi.org/10.1007/BF01337937

    Article  CAS  Google Scholar 

  47. M. Stillman, T. Nyokong, C. Leznoff, A. Lever, Phthalocyanines: properties and applications (VCH, New York, 1989), p. 133

    Google Scholar 

  48. T. Nyokong, Electronic spectral and electrochemical behavior of near infrared absorbing metallophthalocyanines, in Functional Phthalocyanine Molecular Materials. ed. by J. Jiang (Springer, 2010), pp. 45–87

    Chapter  Google Scholar 

  49. J. Janczak, R. Kubiak, M. Śledź, H. Borrmann, Y. Grin, Synthesis, structural investigations and magnetic properties of dipyridinated manganese phthalocyanine, MnPc(py)2. Polyhedron 22(19), 2689–2697 (2003). https://doi.org/10.1016/S0277-5387(03)00361-9

    Article  CAS  Google Scholar 

  50. Lagergren S Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift für Chemie und Industrie der Kolloide 2, 15

  51. A. Altındal, Ö. Kurt, A. Şengül, Ö. Bekaroğlu, Kinetics of CO2 adsorption on ball-type dicopper phthalocyanine thin film. Sens. Actuators B 202, 373–381 (2014). https://doi.org/10.1016/j.snb.2014.05.107

    Article  CAS  Google Scholar 

  52. J. Weber Walter, J.C. Morris, Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89(2), 31–59 (1963). https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to The Foundation of Marmara University, The Commission of Scientific Research (BAPKO) (Project No: FEN-C-YLP-140115-0010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmet Altındal or Zafer Odabaş.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilen Şentürk, C., Şahin, A.N., Çetin, A. et al. Nitrate Ion Sensing Properties of Peripheral 3,4,5-Trimethoxyphenoxy and Chlorine Substituted Metallo and Metal-free Phthalocyanines. J Inorg Organomet Polym 32, 1436–1447 (2022). https://doi.org/10.1007/s10904-021-02203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02203-x

Keywords

Navigation