Skip to main content
Log in

Controlled Fabrication and Characterization of α-FeOOH Nanorods

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

α-FeOOH nanorods was successfully synthesized by hydrothermal method. The key factors influencing the hydrothermal preparation of this material were reported, and the effects of iron source concentration, alkali reaction time, hydrothermal temperature and hydrothermal time on the morphology and structure of α-FeOOH nanorods were discussed in depth. The synthesized nanomaterials were characterized by XRD, TEM and SEM, and the results showed that each experimental parameter had a great influence on the morphology and structure. The experiment should be carried out with the participation of alkali, and the concentration of iron salt was the key to the formation of nanomaterials, besides, the calcination time and the calcination temperature played important roles in the growth of rod length and diameter. The morphology of the prepared nanorods was controllable, and the nanorods might have potential application value in the fields of drug formulation, adsorption, electrochemistry, etc.

Graphical Abstract

A novel α-FeOOH nanorods was successfully synthesized by hydrothermal method. The effects of iron source concentration, alkali reaction time, hydrothermal temperature and hydrothermal time on the morphology and structure of α-FeOOH nanorods were discussed in depth. The synthesized nanomaterials were characterized by XRD, TEM and SEM, and the morphology of the prepared nanorods was controllable. The nanorods might have potential application value in the fields of drug formulation, adsorption, electrochemistry, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Varghese, J.P. Chaudhary, C. Ghoroi, RSC Adv. 10, 13394–13404 (2020)

    Article  CAS  Google Scholar 

  2. J.Y. Liang, X. Yang, D.M. Liu, M. Cong, Y. Song, S.P. Bai, A.A.P.S. Pharm, Sci. Tech. 21, 235 (2020)

    CAS  Google Scholar 

  3. M. Baskey, S. Ghosh, Korean. J. Chem. Eng. 34, 2079–2085 (2017)

    Article  Google Scholar 

  4. P. Das, K. Tantubay, R. Ghosh, S. Dam, M. Baskey, Environ. Sci. Pollut. Res. 28, 49125–49138 (2021)

    Article  CAS  Google Scholar 

  5. G.Q. Gan, X.Y. Li, L. Wang, S.Y. Fan, J.C. Mu, P.L. Wang, G.H. Chen, ACS Nano 14, 9929–9937 (2020)

    Article  CAS  Google Scholar 

  6. P. Das, S. Ghosh, R. Ghosh, S. Dam, M. Baskey, J. Photochem. Photobiol. B Biol. 189, 66–73 (2018)

    Article  CAS  Google Scholar 

  7. S. Ghosh, P. Das, B. Bairy, R. Ghosh, S. Dam, M. Baskey, J. Mater. Sci. 56, 16928–16944 (2021)

    Article  CAS  Google Scholar 

  8. Z.Y. Chen, C. Zeilstra, J.V.D. Stel, J. Sietsma, Y.X. Yang, Ironmak. Steelmak. 47, 741–747 (2020)

    Article  CAS  Google Scholar 

  9. B.G. Kim, J. Park, W. Choi, D.S. Han, J. Kim, H. Park, Appl. Catal. B—Environ. 283, 119608 (2021)

    Article  CAS  Google Scholar 

  10. K. Mukai, T.M. Suzuki, T. Uyama, T. Nonaka, T. Morikawa, I. Yamada, RSC Adv. 10, 44756–44767 (2020)

    Article  CAS  Google Scholar 

  11. S.S. Su, Y.Y. Liu, W. He, X.C. Tang, W. Jin, Y.P. Zhao, J. Environ. Sci. 83, 73–84 (2019)

    Article  Google Scholar 

  12. H. Tanaka, A. Miyafuji, T. Ishikawa, T. Nakayama, Adv. Powder Technol. 29, 9–17 (2018)

    Article  CAS  Google Scholar 

  13. G. Deng, J. Zhao, H.S. Hu, X.Y. Wang, M. Zhu, Y.Y. Feng, Int. J. Hydrogen Energy 46, 37333–37339 (2021)

    Article  CAS  Google Scholar 

  14. Z.C. Wang, H.B. Li, W. Ma, Y.L. Wang, P.Z. Cui, J.G. Qi, Z.R. Chen, Z.Y. Zhu, F.Q. Meng, J. Taiwan Inst. Chem. E. 121, 302–312 (2021)

    Article  CAS  Google Scholar 

  15. P. Das, S. Ghosh, M. Baskey, J. Mater. Sci. Mater. Electron. 30, 19731–19737 (2019)

    Article  CAS  Google Scholar 

  16. E. Sani, L. Mercatelli, M.R. Martina, S. Barison, F. Agresti, Opt. Mater. 96, 109303 (2019)

    Article  CAS  Google Scholar 

  17. F. Monforte, M. Urso, A. Alberti, E. Smecca, S. Mirabella, C. Bongiorno, G. Mannino, G.G. Condorelli, ACS Omega 4, 18495–18501 (2019)

    Article  CAS  Google Scholar 

  18. M.N. Pervez, Y. Wei, P.P. Sun, G.J. Qu, V. Naddeo, Y.P. Zhao, Sci. Total Environ. 781, 146726 (2021)

    Article  CAS  Google Scholar 

  19. S.Q. Huang, Q. Zhang, P.Y. Liu, S.J. Ma, B. Xie, K. Yang, Y.P. Zhao, Appl. Catal. B—Environ. 263, 118336 (2020)

    Article  CAS  Google Scholar 

  20. C. Zhong, R. Deng, M. Gao, Y.P. Cao, W.L. Pan, G. Li, Q. He, Desalin. Water Treat. 213, 248–258 (2021)

    Article  CAS  Google Scholar 

  21. C. Manjunatha, N. Srinivasa, S. Samriddhi, C. Vidya, S. Ashoka, Solid State Sci. 106, 106314 (2020)

    Article  CAS  Google Scholar 

  22. S.H. Zhu, T. Qu, M.K. Irshad, J.Y. Shang, Biochar 2, 81–92 (2020)

    Article  Google Scholar 

  23. T. Solný, P. Ptáček, T. Opravil, L. Dlabajová, M. Březina, J. Másilko, J. Švec, R. Ambat, J. Exp. Nanosci. 16, 1–10 (2021)

    Article  Google Scholar 

  24. M. Çalışkan, T. Baran, M. Nasrollahzadeh, J. Phys. Chem. Solids 152, 109968 (2021)

    Article  Google Scholar 

  25. L.H. Zhang, M. Jeem, K. Okamoto, S. Watanabe, ISIJ Int. 59, 2352–2358 (2019)

    Article  CAS  Google Scholar 

  26. L.Y. Zhang, H. Li, B.W. Yang, N. Han, Y. Wang, Z.T. Zhang, Y. Zhou, D.L. Chen, Y.F. Gao, J. Solid State Electrochem. 24, 905–914 (2020)

    Article  CAS  Google Scholar 

  27. R. Guo, Y. He, T. Yu, P. Cheng, J.H. You, H.J. Lin, C.T. Chen, T.S. Chan, X.W. Liu, Z.W. Hu, Chem. Eng. J. 420, 127587 (2021)

    Article  CAS  Google Scholar 

  28. H.Z. Zhang, Z.L. Xu, Q. Shen, Desalination 498, 114802 (2021)

    Article  CAS  Google Scholar 

  29. S. Ghosh, S. Basu, M. Baskey, J. Mater. Sci. Mater. Electron. 28, 17860–17870 (2017)

    Article  CAS  Google Scholar 

  30. K. Tantubay, P. Das, M. Baskey, J. Environ. Chem. Eng. 8, 103818 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Jiangsu Provincial Postgraduate Scientific Practice and Innovation Project (Grant No. SJCX20_1432) and the Science and Technology Innovation Project of CHN Energy (Grant No. GJNY-20-109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobo Wu or Ruijiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lv, Z., Zhang, S. et al. Controlled Fabrication and Characterization of α-FeOOH Nanorods. J Inorg Organomet Polym 32, 1400–1408 (2022). https://doi.org/10.1007/s10904-021-02190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02190-z

Keywords

Navigation