Skip to main content
Log in

Synthesis of a Magnetic Co@C Material via the Design of a MOF Precursor for Efficient and Selective Adsorption of Water Pollutants

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

3D metal–organic frameworks (MOFs) can be appropriate templates for the fabrication of nanomaterials due to they have active sites exposed on the channel or surface, which thus provide them with improved catalytic performance. In this study, a 3D cobalt-based MOF [Co(H2bpta)]n (Co-MOF), where H4bpta denotes 2,2′,4,4′-biphenyltetracarboxylic acid, has been constructed with the use of a ligand with a high carbon content. On this basis, a 2D magnetic carbon-coated cobalt nanoparticle composite (Co@C) was prepared by using the title MOF under different temperatures. Magnetic Co@C can readily absorb dye from the solution and can thus act as an inexpensive and fast-acting adsorbent. Moreover, we have explored the adsorption isotherms, kinetics and thermodynamics of the anion dyes in detail. The adsorption capacity of the Co@C-800 for investigated methyl orange (MO) and congo red (CR) dyes were 773.48 and 495.66 mg g−1, respectively. It is noteworthy that MO adsorption is higher in existing materials. Thermodynamic studies suggest that the adsorption processes are spontaneous and exothermic. This study opens a new insight into the synthesis and application of carbon-based materials that enable the selective removal of organic dyes.

Graphical Abstract

A Co-MOF has been solvothermal synthesized and structurally characterized, which was used as a combined catalyst and carbon source for the synthesis of magnetic Co@C. Interestingly, the as-grown Co@C-800 exhibits high-performance selective adsorption of anionic dyes (MO and CR) with high adsorption capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C.R. Liermann, P.M. Davies, Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010)

    PubMed  Google Scholar 

  2. S. Wang, B. Zhang, C. Shan, X. Yan, H. Chen, B. Pan, Occurrence and transformation of phosphonates in textile dyeing wastewater along full-scale combined treatment processes. Water Res. 184, 116173 (2020)

    CAS  PubMed  Google Scholar 

  3. C. Ding, M. Yi, B. Liu, C. Han, X. Yu, Y. Wang, Forward osmosis-extraction hybrid process for resource recovery from dye wastewater. J Membrane Sci. 612, 118376 (2020)

    CAS  Google Scholar 

  4. Z. Gong, T. Ma, F. Liang, Syntheses of magnetic blackberry-like Ni@Cu@Pd nanoparticles for efficient catalytic reduction of organic pollutants. J Alloys Compd. 873, 159802 (2021)

    CAS  Google Scholar 

  5. L. Yang, Y. Zhan, R. Yu, J. Lan, J. Shang, B. Dou, H. Liu, R. Zou, S. Lin, Facile and scalable fabrication of antibacterial CO2-responsive cotton for ultrafast and controllable removal of anionic dyes. ACS Appl. Mater. Inter. 13, 2694–2709 (2021)

    CAS  Google Scholar 

  6. A. Malik, M. Nath, Synthesis of Ag/ZIF-7 by immobilization of Ag nanoparticles onto ZIF-7 microcrystals: a heterogeneous catalyst for the reduction of nitroaromatic compounds and organic dyes. J. Environ. Chem. Eng. 8, 104547 (2020)

    CAS  Google Scholar 

  7. Y. Gao, S. Yan, Y. He, Y. Fan, L. Zhang, J. Ma, R. Hou, L. Chen, J. Chen, A photo-Fenton self-cleaning membrane based on NH2-MIL-88B (Fe) and graphene oxide to improve dye removal performance. J. Membrane Sci. 626, 119192 (2021)

    CAS  Google Scholar 

  8. D. Wang, F. Zeng, X. Hu, C. Li, Z. Su, Synthesis of a magnetic 2D Co@NC-600 material by designing a MOF precursor for efficient catalytic reduction of water pollutants. Inorg. Chem. 59, 12672–12680 (2020)

    CAS  PubMed  Google Scholar 

  9. S. Zhou, X. Feng, J. Zhu, Q. Song, G. Yang, Y. Zhang, B. Van der Bruggen, Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation. J. Membrane Sci. 623, 119058 (2021)

    CAS  Google Scholar 

  10. X. Zhang, Z. Li, S. Lin, P. Théato, fibrous materials based on polymeric salicyl active esters as efficient adsorbents for selective removal of anionic dye. ACS Appl. Mater. Inter. 12, 21100–21113 (2020)

    CAS  Google Scholar 

  11. H.X. Chen, X.Y. Lu, H.H. Wang, D.P. Sui, F.B. Meng, W. Qi, Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. J. Energy Chem. 49, 348–357 (2020)

    Google Scholar 

  12. D.S. Wang, L. Xu, F.M. Zeng, X.L. Hu, B.L. Liu, C. Li, Z.M. Su, J. Sun, Synthesis of ultrafine Co/CoO nanoparticle-embedded N-doped carbon framework magnetic material and application for 4-nitrophenol catalytic reduction. New J. Chem. 45, 13751–13754 (2021)

    CAS  Google Scholar 

  13. X. Wu, D. Huang, Y. Wu, J. Zhao, X. Liu, W. Dong, S. Li, D. Li, J. Li, In Situ Synthesis of Nano CuS-Embedded MOF hierarchical structures and application in dye adsorption and hydrogen evolution reaction. ACS Appl. Energy Mater. 2, 5698–5706 (2019)

    CAS  Google Scholar 

  14. W. Shao, C. He, M. Zhou, C. Yang, Y. Gao, S. Li, L. Ma, L. Qiu, C. Cheng, C. Zhao, Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. J. Mater. Chem. A 8, 3168–3179 (2020)

    CAS  Google Scholar 

  15. C. Yu, J. Chen, Y. Zhang, W. Song, X. Li, F. Chen, Y. Zhang, D. Liu, L. Liu, Highly efficient and selective removal of anionic dyes from aqueous solution by using a protonated metal-organic framework. J. Alloy Compd. 853, 157383 (2021)

    CAS  Google Scholar 

  16. T. Selkälä, T. Suopajärvi, J.A. Sirviö, T. Luukkonen, P. Kinnunen, A.L.C.B. de Carvalho, H. Liimatainen, Surface modification of cured inorganic foams with cationic cellulose nanocrystals and their use as reactive filter media for anionic dye removal. ACS Appl. Mater. Inter. 12, 27745–27757 (2020)

    Google Scholar 

  17. S. Das, P. Chakraborty, R. Ghosh, S. Paul, S. Mondal, A. Panja, A.K. Nandi, Folic acid-polyaniline hybrid hydrogel for adsorption/reduction of chromium(VI) and selective adsorption of anionic dye from water. ACS Sus. Chem. Eng. 10, 9325–9337 (2017)

    Google Scholar 

  18. Z. Li, K. Zou, X. Zhang, T. Han, Y. Yang, Hierarchically flower-like N-doped porous carbon materials derived from an explosive 3-fold interpenetrating diamondoid copper metal-organic framework for a supercapacitor. Inorg. Chem. 55, 6552–6562 (2016)

    CAS  PubMed  Google Scholar 

  19. X. Wu, J. Zhao, Y. Wu, W. Dong, D. Li, J. Li, Q. Zhang, Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-Metal–organic framework for efficient methanol oxidation and nitrophenol reduction. ACS Appl. Mater. Inter. 10, 12740–12749 (2018)

    CAS  Google Scholar 

  20. K. Nath, C.K. Karan, K. Biradha, Metal–organic frameworks and metal–organic framework-derived N-doped porous carbon materials as heterogeneous catalysts: chemical fixation of carbon dioxide under mild conditions and electrochemical hydrogen evolution. Cryst. Growth Des. 19, 6672–6681 (2019)

    CAS  Google Scholar 

  21. B. Volosskiy, H. Fei, Z. Zhao, S. Lee, M. Li, Z. Lin, B. Papandrea, C. Wang, Y. Huang, X. Duan, Tuning the catalytic activity of a metal–organic framework derived copper and nitrogen Co-doped carbon composite for oygen reduction reaction. ACS Appl. Mater. Inter. 8, 26769–26774 (2016)

    CAS  Google Scholar 

  22. R. Rajak, M. Saraf, A. Mohammad, S.M. Mobin, Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications. J. Mater. Chem. A 5, 17998–18011 (2017)

    CAS  Google Scholar 

  23. Y. Zhang, H. Zhang, X. Wu, Z. Deng, E. Zhou, Z. Yu, Nanolayered Cobalt@Carbon Hybrids derived from metal–organic frameworks for microwave absorption. ACS Appl. Nano. Mater. 2, 2325–2335 (2019)

    CAS  Google Scholar 

  24. M. Hasanzadeh, A. Simchi, H. Shahriyari Far, Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 81, 405–414 (2020)

    CAS  Google Scholar 

  25. O. Mahi, K. Khaldi, M.S. Belardja, A. Belmokhtar, A. Benyoucef, Development of a new hybrid adsorbent from Opuntia Ficus Indica NaOH activated with PANI reinforced and its potential use in orange G dye removal. J. Inorg. Organomet. Polym. Mater. 31, 2095–2104 (2021)

    CAS  Google Scholar 

  26. Y. Zhang, H. Zhang, X. Wu, Z. Deng, E. Zhou, Z. Yu, Nanolayered cobalt@carbon hybrids derived from metal–organic frameworks for microwave absorption. ACS Appl. Nano Mater. 2, 2325–2335 (2019)

    CAS  Google Scholar 

  27. S.Y. Mendiola-Alvarez, P.G. Turnes, J. Guzman-Mar, A. Hernandez-Ramirez, L. Hinojosa-Reyes, C.C. Palomino, Magnetic porous carbons derived from cobalt(ii)-based metal-organic frameworks for the solid-phase extraction of sulfonamides. Dalton Trans. 49, 8959–8966 (2020)

    CAS  PubMed  Google Scholar 

  28. J. Liu, S. Ma, L. Zang, Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution. Appl. Surf. Sci. 265, 393–398 (2013)

    CAS  Google Scholar 

  29. M.A. Ahsan, O. Fernandez-Delgado, E. Deemer, H. Wang, A.A. El-Gendy, M.L. Curry, J.C. Noveron, Carbonization of Co-BDC MOF results in magnetic Co@C-800 nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J. Mol. Liquid 290, 111059 (2019)

    CAS  Google Scholar 

  30. M.A. Nazir, N.A. Khan, C. Cheng, S.S.A. Shah, T. Najam, M. Arshad, A. Sharif, S. Akhtar, A.U. Rehman, Surface induced growth of ZIF-67 at Co-layered double hydroxide: removal of methylene blue and methyl orange from water. Appl. Clay Sci. 190, 105564 (2020)

    CAS  Google Scholar 

  31. M. Trukawka, K. Cendrowski, M. Peruzynska, A. Augustyniak, P. Nawrotek, M. Drozdzik, E. Mijowska, Carbonized metal-organic frameworks with trapped cobalt nanoparticles as biocompatible and efficient azo-dye adsorbent. Environ. Sci. Eur. 31, 56 (2019)

    Google Scholar 

  32. Z. Pan, J. Xu, X. Yao, Y. Li, Z. Guo, H. Zheng, Syntheses, structures, magnetic and photoluminescence properties of metal–organic frameworks based on aromatic polycarboxylate acids. CrystEngComm 13, 1617–1624 (2011)

    CAS  Google Scholar 

  33. J. Long, K. Shen, Y. Li, Bifunctional N-doped Co@C-800 catalysts for base-free transfer hydrogenations of nitriles: Controllable selectivity to primary amines vs imines. ACS Catal. 7, 275–284 (2017)

    CAS  Google Scholar 

  34. I. Toumi, H. Djelad, F. Chouli, A. Benyoucef, Synthesis of PANI@ZnO hybrid material and evaluations in adsorption of congo red and methylene blue dyes: structural characterization and adsorption performance. J. Inorg. Organomet. Polym. (2021). https://doi.org/10.1007/s10904-021-02084-0

    Article  Google Scholar 

  35. S. Gutiérrez-Tarriño, J.L. Olloqui-Sariego, J.J. Calvente, G.M. Espallargas, F. Rey, A. Corma, P. Oña-Burgos, Cobalt metal–organic framework based on layered double nanosheets for enhanced electrocatalytic water oxidation in neutral media. J. Am. Chem. Soc. 142, 19198–19208 (2020)

    PubMed  Google Scholar 

  36. P.L. Feng, J.J. Perry, S. Nikodemski, B.W. Jacobs, S.T. Meek, M.D. Allendorf, Assessing the purity of metal−organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J. Am. Chem. Soc. 132, 15487–15489 (2010)

    CAS  PubMed  Google Scholar 

  37. D. Wang, J. Zhang, G. Li, J. Yuan, J. Li, Q. Huo, Y. Liu, Mesoporous hexanuclear copper cluster-based metal–organic framework with highly selective adsorption of gas and organic dye molecules. ACS Appl. Mater. Inter. 10, 31233–31239 (2018)

    CAS  Google Scholar 

  38. X. Yang, Y. Yan, W. Wang, Z. Hao, W. Zhang, W. Huang, Y. Wang, A 2-fold interpenetrated nitrogen-rich metal-organic framework: dye adsorption and CO2 capture and conversion. Inorg. Chem. 60, 3156–3164 (2021)

    CAS  PubMed  Google Scholar 

  39. W. Fan, X. Wang, B. Xu, Y. Wang, D. Liu, M. Zhang, Y. Shang, F. Dai, L. Zhang, D. Sun, Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. J. Mater. Chem. A 6, 24486–24495 (2018)

    CAS  Google Scholar 

  40. S. Zhan, D. Zhu, G. Ren, Z. Shen, M. Qiu, S. Yang, H. Yu, Y. Li, Coaxial-electrospun magnetic core–shell Fe@TiSi nanofibers for the rapid purification of typical dye wastewater. ACS Appl. Mater. Inter. 6, 16841–16850 (2014)

    CAS  Google Scholar 

  41. J. Zhao, J. Luan, H.X. Yu, G.C. Liu, H.Y. Lin, X.L. Wang, B.K. Chen, Five naphthalene-amide-bridged Ni(II) complexes: electrochemistry, bifunctional fluorescence responses, removal of contaminants and optimization by pyrolysis. CrystEngComm 22, 1330–1339 (2020)

    CAS  Google Scholar 

  42. S.K. Konavarapu, A. Goswami, A.G. Kumar, S. Banerjee, K. Biradha, MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorg. Chem. Front. 6, 184–191 (2019)

    CAS  Google Scholar 

  43. L.J. Han, F.Y. Ge, G.H. Sun, X.J. Gao, H.G. Zheng, Effective adsorption of Congo red by a MOF-based magnetic material. Dalton Trans. 48, 4650–4656 (2019)

    CAS  PubMed  Google Scholar 

  44. W.A. El-Mehalmey, Y. Safwat, M. Bassyouni, M.H. Alkordi, Strong interplay between polymer surface charge and MOF cage chemistry in mixed-matrix membrane for water treatment applications. ACS Appl. Mater. Inter. 12, 27625–27631 (2020)

    CAS  Google Scholar 

  45. S.C.C. van der Lubbe, F. Zaccaria, X. Sun, C. Fonseca Guerra, Secondary electrostatic interaction model revised: prediction comes mainly from measuring charge accumulation in hydrogen-bonded monomers. J. Am. Chem. Soc. 141, 4878–4885 (2019)

    PubMed  PubMed Central  Google Scholar 

  46. F. Gritti, G. Guiochon, Analytical solution of the ideal model of chromatography for a Bi-Langmuir adsorption isotherm. Anal. Chem. 85, 8552–8558 (2013)

    CAS  PubMed  Google Scholar 

  47. S. Nufer, M.J. Large, A.A.K. King, S.P. Ogilvie, A. Brunton, A.B. Dalton, Edge-selective gas detection using Langmuir films of graphene platelets. ACS Appl. Mater. Inter. 18, 21740–21745 (2018)

    Google Scholar 

  48. I. Abe, K. Hayashi, T. Hirashima, M. Kitagawa, Relationship between the Freundlich adsorption constants K and 1/N hydrophobic adsorption. J. Am. Chem. Soc. 104, 6452–6453 (1982)

    CAS  Google Scholar 

  49. A.J.S. Ribeiro, K. Zaleta-Rivera, E.A. Ashley, B.L. Pruitt, Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes. ACS Appl. Mater. Inter. 6, 15516–15526 (2014)

    CAS  Google Scholar 

  50. X. Ni, G. Dong, L. Li, Q. Yang, Z. Wu, Kinetic study of electron transport behaviors used for ion sensing technology in air/EGR diluted methane flames. Fuel 288, 119825 (2021)

    CAS  Google Scholar 

  51. J.C. Moreno-López, A. Pérez Paz, S. Gottardi, L. Solianyk, J. Li, L. Monjas, A.K.H. Hirsch, D.J. Mowbray, M. Stöhr, Unveiling adatoms in on-surface reactions: combining scanning probe microscopy with van’t Hoff plots. J. Phys. Chem. C 125, 9847–9854 (2021)

    Google Scholar 

  52. Y. Yao, H. Bing, X. Feifei, C. Xiaofeng, Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem. Eng. J. 170, 82–89 (2011)

    CAS  Google Scholar 

  53. H.Y. Zhu, R. Jiang, L. Xiao, G.M. Zeng, Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour. Technol. 101, 5063–5069 (2010)

    CAS  PubMed  Google Scholar 

  54. Y. Tian, X. Wang, Y. Pan, Simple synthesis of Ni-containing ordered mesoporous carbons and their adsorption/desorption of methylene orange. J. Hazard. Mater. 213–214, 361–368 (2012)

    PubMed  Google Scholar 

  55. G. Li, Y. Du, Y. Tao, H. Deng, X. Luo, J. Yang, Iron(II) cross-linked chitin-based gel beads: preparation, magnetic property and adsorption of methyl orange. Carbohydr. Polym. 82, 706–713 (2010)

    CAS  Google Scholar 

  56. Z. Liu, W. He, Q. Zhang, H. Shapour, M.F. Bakhtari, Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega 6, 4597–4608 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. W. Cheah, S. Hosseini, M.A. Khan, T.G. Chuah, T.S.Y. Choong, Acid modified carbon coated monolith for methyl orange adsorption. Chem. Eng. J. 215–216, 747–754 (2013)

    Google Scholar 

  58. K. Guesh, C.A.D. Caiuby, Á. Mayoral, M. Díaz-García, I. Díaz, M. Sanchez-Sanchez, Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst. Growth Des. 17, 1806–1813 (2017)

    CAS  Google Scholar 

  59. J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, Y. Tang, H. Fan, Z. Yuan, J. Chen, Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Inter. 4, 5749–5760 (2012)

    CAS  Google Scholar 

  60. Z. Ni, S. Xia, L. Wang, F. Xing, G. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies. J. Colloid Interface Sci. 316, 284–291 (2007)

    CAS  PubMed  Google Scholar 

  61. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J. Colloid Interface Sci. 362, 457–462 (2011)

    CAS  PubMed  Google Scholar 

  62. T. Kou, Y. Wang, C. Zhang, J. Sun, Z. Zhang, Adsorption behavior of methyl orange onto nanoporous core–shell Cu@Cu2O nanocomposite. Chem. Eng. J. 223, 76–83 (2013)

    CAS  Google Scholar 

  63. P. Zhang, Q. An, J. Guo, C. Wang, Synthesis of mesoporous magnetic Co-NPs/carbon nanocomposites and their adsorption property for methyl orange from aqueous solution. J. Colloid Interface Sci. 389, 10–15 (2013)

    CAS  PubMed  Google Scholar 

  64. W. Deligeer, Y.W. Gao, S. Asuha, Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites. Appl. Surf. Sci. 257, 3524–3528 (2011)

    CAS  Google Scholar 

  65. M. Arshadi, F. SalimiVahid, J.W.L. Salvacion, M. Soleymanzadeh, Adsorption studies of methyl orange on an immobilized Mn-nanoparticle: kinetic and thermodynamic. Rsc Adv. 4, 16005–16017 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Liaoning Provincial Department of Education Fund (LQ2019004 and LZ2019005).

Funding

The funder was funded by Department of Education of Liaoning Province, Grant Nos (LQ2019004) and (LZ2019005).

Author information

Authors and Affiliations

Authors

Contributions

YL and YW—Crystal synthesis, writing-original draft preparation. XSZ and AAY–formal analysis, investigation; HZL and ZGW—Software; WZL and JL—Writing-review and editing.

Corresponding authors

Correspondence to Wen-Ze Li or Jian Luan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Y., Zhang, XS. et al. Synthesis of a Magnetic Co@C Material via the Design of a MOF Precursor for Efficient and Selective Adsorption of Water Pollutants. J Inorg Organomet Polym 32, 700–712 (2022). https://doi.org/10.1007/s10904-021-02157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02157-0

Keywords

Navigation