Skip to main content
Log in

Micro-Nanoarchitectonics of Electroless Cu/Ni Composite Materials Based on Wood

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The changes of properties of wood-based Cu–Ni composites were studied via a simple electroless Cu and Ni method on wood surface to obtain Cu–Ni multilayer composites with excellent properties. The results showed that the wood was conducted via two times electroless Cu and one times electroless Ni had better performance, obtaining good surface roughness (9.99 μm) and good hydrophobic performance (contact angle, 122.5°). Here, Cu particles grew closely among Ni particles and embedded in Ni particles. The electrical conductivity of wood-based Cu–Ni composites was 2370.76 S/cm. When the electroless Ni was 55 min, the contact angle could reach 123°, indicating that the composite coatings had best hydrophobicity. The Ni/Cu, Cu/Cu, and Cu/Wood three layers with different electrical-magnetic properties can induce multiple reflections at each interface, which promote to the absorption attenuation. The average electromagnetic shielding effectiveness of Cu and Ni wood-based composites can reach 93.8 dB at L band ranging from 0.3 × 10−3 to 3.0 × 103 MHz with a low thickness (157 μm) and an ultralow density (0.75 g/cm3), verified the multilayer composite materials can block over 99.99% of incident EM waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Bai, F. Qin, Y.X. Lu, Multifunctional electromagnetic interference shielding ternary alloy (Ni–W–P) decorated fabric with wide-operating-range joule heating performances. ACS Appl. Mater. Interfaces 12, 48016–48026 (2020)

    Article  CAS  Google Scholar 

  2. S. Ghosh, B. Nitin, S. Remanan, Y. Bhattacharjee, A. Ghorai, T. Dey, T.K. Das, N.C, A multifunctional smart textile derived from merino wool/nylon polymer nanocomposites as next generation microwave absorber and soft touch sensor. ACS Appl. Mater. Interfaces 12, 17988–18001 (2020)

    Article  CAS  Google Scholar 

  3. A.H. Kumar, M.B. Ahamed, K. Deshmukh, M.S. Sirajuddeen, Morphology, dielectric and EMI shielding characteristics of graphene nanoplatelets, montmorillonite nanoclay and titanium dioxide nanoparticles reinforced polyvinylidenefluoride nanocomposites. J. Inorg. Organomet. Polym. Mater. 31, 2003–2016 (2021)

    Article  Google Scholar 

  4. M. Saini, S.K. Singh, R. Shukla, A. Kumar, Mg doped copper ferrite with polyaniline matrix core-shell ternary nanocomposite for electromagnetic interference shielding. J. Inorg. Organomet. Polym. Mater. 28, 2306–2315 (2018)

    Article  CAS  Google Scholar 

  5. A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020)

    Article  CAS  Google Scholar 

  6. S. Engels, N.L. Schneider, N. Lefeldt, C.M. Hein, M. Zapka, A. Michalik, D. Elbers, A. Kittel, P.J. Hore, H. Mouritsen, Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356 (2014)

    Article  CAS  Google Scholar 

  7. J.J. Zhang, J.W. Li, G.G. Tan, R.C. Hu, J.Q. Wang, C.T. Chang, X.M. Wang, Thin and flexible Fe–Si–B/Ni–Cu–P metallic glass multilayer composites for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(48), 42192–42199 (2017)

    Article  CAS  Google Scholar 

  8. J.P. Li, S.H. Qi, M.Y. Zhang, Z.F. Wang, Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy. J. Appl. Polym. Sci. 132, 42306 (2015)

    Google Scholar 

  9. H. Gargama, A.K. Thakur, A.K. Chaturvedi, Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications. J. Appl. Phys. 117, 224903 (2015)

    Article  Google Scholar 

  10. M. Arjmand, A.A. Moud, Y. Li, U. Sundararaj, Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv. 5, 56590–56598 (2015)

    Article  CAS  Google Scholar 

  11. S.H. Yu, Z.W. Liu, L. Zhao, B.M. Gong, High-performance flexible transparent conductive tape based on copper nanowires. Opt. Mater. 119, 111301 (2021)

    Article  CAS  Google Scholar 

  12. N.D. Jaji, M.B.H. Othman, H.L. Lee, M.H. Hussin, D. Hui, One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles. Nanotechnol. Rev. 10(1), 318–329 (2021)

    Article  CAS  Google Scholar 

  13. A.M. Alturki, D.E. Abulyazied, M.A. Taha, A study to evaluate the bioactivity behavior and electrical properties of hydroxyapatite/Ag2O-borosilicate glass nanocomposites for biomedical applications. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-02100-3

    Article  Google Scholar 

  14. Z. Liu, L. Zhang, S. Poyraz, J. Smith, V. Kushvaha, H. Tippur, X.Y. Zhang, An ultrafast microwave approach towards multicomponent and multi-dimensional nanomaterials. RSC Adv. 4, (18) 9308–9313 (2014)

    Article  CAS  Google Scholar 

  15. Z. Liu, J.L. Wang, V. Kushvaha, S. Poyraz, H. Tippur, S.Y. Park, M. Kim, Y. Liu, J. Bar, H. Chen, X.Y. Zhang, Poptube approach for ultrafast carbon nanotube growth. Chem. Commun. 47(35), 9912–9914 (2011)

    Article  CAS  Google Scholar 

  16. Z.X. Wang, X.S. Han, J.W. Pu, Mxene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydr. Polym. 254, 117033 (2021)

    Article  CAS  Google Scholar 

  17. B.K. Dang, Y.P. Chen, Q.F. Sun, Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards. Nanotechnology 29, 1–9 (2018)

    Article  CAS  Google Scholar 

  18. J. Chen, Z.Y. Teng, Y.Y. Zhao, Electromagnetic interference shielding properties of wood-plastic composites filled with graphene decorated carbon fiber. Polym. Compos. 39(6), 2110–2116 (2018)

    Article  CAS  Google Scholar 

  19. W. He, J.P. Li, Y.J. Li, Characteristics and properties of wood/polyaniline electromagnetic shielding composites synthesized via in situ polymerizationp. Polym. Compos. 39(2), 537–543 (2018)

    Article  CAS  Google Scholar 

  20. Y. Zheng, Y.J. Song, X.F. Zhang, Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 40802–40814 (2020)

    Article  CAS  Google Scholar 

  21. Y.F. Pan, D.W. Yin, J.T. Huang, Performance and preparation of the electroless Ni wood-based composites. BioResources 15(4), 7517–7531 (2020)

    Article  CAS  Google Scholar 

  22. W. Yang, B. Shao, T. Liu, Robust mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 185–195 (2018)

    Google Scholar 

  23. H.B. Zhang, Q. Yan, W.G. Zheng, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011)

    Article  CAS  Google Scholar 

  24. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012)

    CAS  PubMed  Google Scholar 

  25. Y. Zhan, J. Wang, K. Zhang, Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018)

    Article  CAS  Google Scholar 

  26. T.C. Guo, Y. Wang, J.T. Huang, Studies of electroless copper plating on poplar Veneer. BioResources 11(3), 6920–6931 (2016)

    Article  CAS  Google Scholar 

  27. Y.F. Pan, X. Wang, J.T. Huang, The preparation, characterization, and influence of multiple electroless nickel-phosphorus (Ni–P) composite coatings on poplar veneer. BioResources 11(1), 724–735 (2016)

    CAS  Google Scholar 

  28. A. Sheng, W. Ren, Y.Q. Yang, Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. A 129, 105692 (2020)

    Article  CAS  Google Scholar 

  29. Y.B. Tao, P. Li, S.Q. Shi, Effects of carbonization temperature and component ratio on electromagnetic interference shielding effectiveness of wood ceramics. Materials 9, 540 (2016)

    Article  Google Scholar 

  30. J.H. Ha, S.K. Hong, J.K. Ryu, Development of multi-functional graphene polymer composites having electromagnetic interference shielding and de-Lcing properties. Polymers 11, 01 (2019)

    Article  Google Scholar 

  31. N. Yousefi, X.Y. Sun, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)

    Article  CAS  Google Scholar 

  32. Y. Wang, W. Wang, X.D. Ding, Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. J. Chem. Eng. 380(12), 108–113 (2020)

    Google Scholar 

  33. L. Wang, Z. Wang, G.Y. Ning, Research progress of wood-based conductive electromagnetic shielding materials. Mater. Rep. 32(7), 2320–2328 (2018)

    Google Scholar 

  34. Q. Liu, Q. Cao, H. Bi, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016)

    Article  CAS  Google Scholar 

  35. J.W. Li, A.F. Wang, J.B. Qin, Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas. Compos. A 140, 106144 (2021)

    Article  CAS  Google Scholar 

  36. S. Li, Z. Xu, Y. Dong, Ni@nylon mesh/PP composites with a novel treering structure for enhancing electromagnetic shielding. Compos. A: Appl. Sci. Manuf. 131, 105798 (2020)

    Article  CAS  Google Scholar 

  37. X. Wang, B. Wen, X. Yang, Construction of core-shell structural nickel@graphite nanoplate functional particles with high electromagnetic shielding effectiveness. Compos. B: Eng. 173, 106904 (2019)

    Article  CAS  Google Scholar 

  38. J. Li, Y. Ding, Q. Gao, Ultrathin and flexible biomassderived C@CoFe nanocomposite films for efficient electromagnetic interference shielding. Compos. B: Eng. 190, 107935 (2020)

    Article  CAS  Google Scholar 

  39. Z.R. He, X.H. Jie, W.Q. Lian, Hierarchical structure and hydrophobic properties of copper based micro/nano structure prepared by EDM. Mater. Eng. 48(01), 144–149 (2020)

    Google Scholar 

  40. F.F. Tian, M.A. Hu, M. Li, Preparation of superhydrophobic nickel film by electrochemical deposition. Fudan J. (Nat. Sci. Ed.) 51(02), 163–167 (2012)

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Start-up Project of Inner Mongolia Agricultural University High-level Talents Introduction Scientific Research (NDYB2016-24), Natural Science Foundation of Inner Mongolia Autonomous Region (2019BS03014 and 2018BS02003), The Colleges and Universities Science Research Project of Inner Mongolia Autonomous Region (NJZY18058 and NJZY21468), Science research innovation projects of the Inner Mongolia Agricultural University for undergraduate (KJCX2020025) and Science and Technology Innovation Leading Project of Inner Mongolia Autonomous Region (KCBJ2018013), The undergraduate innovation and entrepreneurship training program (202110129007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfei Pan or Jintian Huang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Guo, Q., Yin, D. et al. Micro-Nanoarchitectonics of Electroless Cu/Ni Composite Materials Based on Wood. J Inorg Organomet Polym 32, 687–699 (2022). https://doi.org/10.1007/s10904-021-02155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02155-2

Keywords

Navigation