Skip to main content
Log in

Synthesis and Characterization of Some Complexes Derived from Isatin Dye Ligand and Study of their Biological Potency and Anticorrosive Behavior on Aluminum Metal in Acidic Medium

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Divalent Mn, Ni, Zn, and trivalent La complexes of H3L ligand [N’,2-bis((Z)-2-oxoindolin-3-ylidene)hydrazine-1 carbohydrazide] were synthesized and characterized via diverse spectroscopic methods (FT-IR, NMR, electronic, PXRD, and GC-MS), molar conductance and magnetic susceptibility measurements. The different ways of binding for the H3L ligand with metal ions were inferred, as the H3L ligand acted in mono-negative N2O tridentate, mono-negative N2O3 pentadentate, bi-negative N2O3 pentadentate, and tri-negative N2O3 pentadentate manners in coordination to Mn2+, Zn2+, La3+, and Ni2+ metal ions, respectively. DFT modeling was performed using the DMOL3/material studio software, and some of the experimental outcomes were interpreted and authenticated. Electrochemical performance of Mn2+ ions in the existence and absence of H3L ligand was considered via cyclic voltammetry. The corrosion effectiveness of the H3L ligand (inhibitor) to aluminum metal was evaluated, and the molecular dynamic (MD) simulations for adsorption of the H3L inhibitor on Al surface were performed via FORCITE quench code. The isolated compounds were inspected for their antimicrobial (against C. albicans fungi, G+ bacteria S. aureus and B. subtilis, and G bacteria P. aeruginosa and E. coli), cytotoxic, and antioxidant (ABTS, and SOD) activities. A molecular docking study was performed to give the favorable binding sites for the ligand to E. coli, and S. aureus proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Nath, P.K. Saini, Dalton Trans. 40, 27 (2011)

    Article  Google Scholar 

  2. H. Schiff, Justus Liebigs Ann. Chem. 150, 2 (1869)

    Article  Google Scholar 

  3. T.A. Yousef, G.M. Abu El-Reash, J. Mol. Struct. 1201,  (2020)

  4. S.A. Elsayed, H.E. Badr, A. di Biase, A.M. El-Hendawy, J. Inorg. Biochem. 223, 2 (2021)

    Article  Google Scholar 

  5. F. Tokay, S. Bağdat, Int. J. Environ. Anal. Chem. 99, 15 (2019)

    Article  Google Scholar 

  6. A. Arunadevi, N. Raman, J. Coord. Chem. 73, 15 (2020)

    Article  Google Scholar 

  7. C.C. Login, I. Bâldea, B. Tiperciuc, D. Benedec, D.C. Vodnar, N. Decea, Ş Suciu, Oxidative Medicine and Cellular Longevity 2019, 110958 (2019)

    Article  Google Scholar 

  8. T.Y. Fonkui, M.I. Ikhile, P.B. Njobeh, D.T. Ndinteh, BMC Chemistry 13, 1 (2019)

    Article  CAS  Google Scholar 

  9. A. Fetoh, M.A. Mohammed, M.M. Youssef, G.M. Abu El-Reash, Journal of Molecular Liquids 287, (2019)

  10. M. Bhagat, S. Rajput, S. Arya, S. Khan, P. Lehana, Bull. Mater. Sci. 38, 5 (2015)

    Article  Google Scholar 

  11. E.E. Elemike, H.U. Nwankwo, D.C. Onwudiwe, J. Mol. Liq. 276, 223–242 (2019)

    Article  Google Scholar 

  12. A.M. Younis, M.M. El-Gamil, T.H. Rakha, G.M. Abu El-Reash. Appl. Organomet. Chem. 35, 7 (2021)

    Google Scholar 

  13. S.B. Rana, R.P.P. Singh, S. Arya, J. Mater. Sci.: Mater. Electron. 28, 3 (2017)

    Google Scholar 

  14. A.I. Vogel, J. Bassett, J. Bassett, Vogel’s textbook of quantitative inorganic analysis: including elementary instrumental analysis, Longman London1978

  15. B. Delley, J. Chem. Phys. 92, 1 (1990)

    Article  Google Scholar 

  16. B. Delley, J. Chem. Phys. 113, 18 (2000)

    Article  Google Scholar 

  17. X. Wu, A.K. Ray, Phys. Rev. B 65, 8 (2002)

    Google Scholar 

  18. Modeling, and Simulation Solutions for Chemicals and Materials Research, BIOVIA Materials Studio (Accelrys software Inc., San Diego, USA, 2017)

    Google Scholar 

  19. B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 11 (1999)

    Article  Google Scholar 

  20. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 30, 16 (2009)

    Article  Google Scholar 

  21. B.I.O.V.I.A.D.S. Dassault Systèmes, Visualizer, Dassault Systèmes, San Diego, USA, 2019

  22. K.K.W. Siu, J.E. Lee, G.D. Smith, C. Horvatin-Mrakovcic, P.L. Howell, Acta Cryst. F 64, 5 (2008)

    Article  Google Scholar 

  23. X. Qiu, S.S. Abdel-Meguid, C.A. Janson, R.I. Court, M.G. Smyth, D.J. Payne, Protein Sci. 8, 11 (1999)

    Google Scholar 

  24. J. Fuhrmann, A. Rurainski, H.P. Lenhof, D. Neumann, J. Comput. Chem. 31, 9 (2010)

    Google Scholar 

  25. O.A. El-Gammal, G.M.A. El‐Reash, R.A. Bedier, Appl. Organomet. Chem. 33, 10 (2019)

    Article  Google Scholar 

  26. A.C. Ekennia, D.C. Onwudiwe, A.A. Osowole, L.O. Olasunkanmi, E.E. Ebenso, J. Chem. 2016, 279–292 (2016)

    Article  Google Scholar 

  27. T. Mosmann, J. Immunol. Methods 65, 1 (1983)

    Article  Google Scholar 

  28. T.V. Sirota, Biochem. (Mosc.), Suppl., Ser. B Biomed. chem. 6, 3 (2012)

  29. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 9 (1999)

    Article  Google Scholar 

  30. D. Villaño, M.S. Fernández-Pachón, A.M. Troncoso, M.C. García-Parrilla, Talanta 64, 2 (2004)

    Google Scholar 

  31. S.J. Mohammed, A.K. Salih, M.A.M. Rashid, K.M. Omer, K.A. Abdalkarim, Molecules 25, 22 (2020)

    CAS  Google Scholar 

  32. B. Kurt, H. Temel, M. Atlan, S. Kaya, J. Mol. Struct. 1209, (2020)

  33. O.A. El-Gammal, G.M. Abu El-Reash, S.E. Ghazy, A.H. Radwan, J. Mol. Struct. 1020, (2012)

  34. G. Dong, J.P. Matthews, D.C. Craig, A.T. Baker, Inorganica Chim. Acta 284, 2 (1999)

    Article  Google Scholar 

  35. G.M. Gray, N. Takada, M. Jan, H. Zhang, J.L. Atwood, J. Organomet. Chem. 381, 1 (1990)

    Article  Google Scholar 

  36. S.V. SAGAR BABU, Y. K.S.V. KRISHNA RAO. ILL, LEE, J. Chil. Chem. Soc. 62, (2017)

  37. A.M. Younis, T.H. Rakha, M.M. El-Gamil, G.M.A. El-Reash, J. Mol. Struct. 1245, (2021)

  38. A.W. Coats, J. Redfern, Nature 201, 4914 (1964)

    Article  Google Scholar 

  39. H.H. Horowitz, G. Metzger, J. Anal. Chem. 35, 10 (1963)

    Article  Google Scholar 

  40. A. Frost, R. Pearson, J. Phys. Chem. 65, 2 (1961)

    Article  Google Scholar 

  41. T. Hatakeyama, F. Quinn, Thermal analysis: fundamentals and applications to polymer science, [sl]1999

  42. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, J. Appl. Crystallogr. 48, 2 (2015)

    Article  Google Scholar 

  43. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, J. Appl. Crystallogr. 41, 4 (2008)

    Google Scholar 

  44. C. Xiao-Quan, L. Huan-Bin, G. Guo-Bang, Mater. Chem. Phys. 91, 2–3 (2005)

    Article  Google Scholar 

  45. G.A.A. Al-Hazmi, K.S. Abou‐Melha, N.M. El‐Metwaly, I. Althagafi, F. Shaaban, M.G. Elghalban, M.M. El‐Gamil, Appl. Organomet. Chem. 34, 3 (2019)

    Google Scholar 

  46. K. Fukui, T. Yonezawa, C. Nagata, H. Shingu, J. Chem. Phys. 22, 8 (1954)

    Article  Google Scholar 

  47. A.A. El-Sherif, A. Fetoh, Y.K. Abdulhamed, G.M.A. El-Reash, Inorganica Chim. Acta 480, (2018)

  48. J. Janak, Phys. Rev. B 18, 12 (1978)

    Article  Google Scholar 

  49. N. Özdemir, S. Dayan, O. Dayan, M. Dinçer, N. Kalaycıoğlu, Mol. Phys. 111, 6 (2013)

    Article  Google Scholar 

  50. R.G. Parr, Density functional theory of atoms and molecules, Horizons of quantum chemistry, Springer1980, pp. 5-15

  51. R.G. Parr, L.v. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 9 (1999)

    Article  Google Scholar 

  52. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr., Phys. Rev. Lett. 49, 23 (1982)

    Article  Google Scholar 

  53. M. Govindarajan, S. Periandy, K. Carthigayen, Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, (2012)

  54. J. Yu, H. Wang, Q. Ji, Environ. Sci. Pollut. Res. 26, 22 (2019)

    Google Scholar 

  55. M.A. Khaled, M.A. Ismail, A.A. El-Hossiany, A.E.-A.S. Fouda, RSC Adv. 11, 41 (2021)

    Article  Google Scholar 

  56. O.A. Akinbulumo, O.J. Odejobi, E.L. Odekanle, Results in Materials 5, (2020)

  57. S.W. Bunte, H. Sun, J. Phys. Chem. B 104, 11 (2000)

    Article  Google Scholar 

  58. J. Sun, Bull. Korean Chem. Soc. 35, 7 (2014)

    Google Scholar 

  59. S.K. Saha, M. Murmu, N.C. Murmu, P. Banerjee, J. Mol. Struct. 1245, (2021)

  60. W. Liu, A. Tkatchenko, M. Scheffler, Acc. Chem. Res. 47, 11 (2014)

    CAS  Google Scholar 

  61. K. Mishima, X. Du, N. Miyamoto, N. Kano, H. Imaizumi, J. Funct. Biomater. 9, 3 (2018)

    Article  Google Scholar 

  62. M. Bhagat, R. Anand, R. Datt, V. Gupta, S. Arya, J. Inorg. Organomet. Polym Mater. 29, 3 (2019)

    Article  Google Scholar 

  63. M.A. Morsi, E.h. Gomaa, A.S. Nageeb, Asian J. Nanosci. Mater. 1, 4 (2018)

    Google Scholar 

  64. D.A.C. Brownson, C.E. Banks, V. Springer, The handbook of graphene electrochemistry (Springer, London, 2014)

    Book  Google Scholar 

  65. A. Fetoh, M.A. Mohammed, M.M. Youssef, G.M. Abu El-Reash. Appl. Organomet. Chem. 33, 4 (2019)

    Google Scholar 

  66. N. Raman, R. Jeyamurugan, J. Joseph, J. Iran. Chem. Soc. 3, 2 (2010)

    Google Scholar 

  67. M. Sunitha, P. Jogi, B. Ushaiah, C.G. Kumari, J. Chem. 9, (2012)

  68. M. Wang, J.H. Tran, G.A. Jacoby, Y. Zhang, F. Wang, D.C. Hooper, Antimicrob. Agents Chemother. 47, 7 (2003)

    Article  Google Scholar 

  69. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, J. Nanobiotechnology 15, 1 (2017)

    Article  Google Scholar 

  70. A. Sharma, V.K. Gupta, R. Pathania, Indian J Med Res 149, 2 (2019)

    Google Scholar 

  71. Z. Breijyeh, B. Jubeh, R. Karaman, Molecules 25, 6 (2020)

    Google Scholar 

  72. F. Deyhimi, F. Nami, Int. J. Chem. Kinet. 44, 10 (2012)

    Article  Google Scholar 

  73. I.R. Ilyasov, V.L. Beloborodov, I.A. Selivanova, R.P. Terekhov, Int. J. Mol. Sci. 21, 3 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaber M. Abu El-Reash.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12240.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younis, A.M., Rakha, T.H., El-Gamil, M.M. et al. Synthesis and Characterization of Some Complexes Derived from Isatin Dye Ligand and Study of their Biological Potency and Anticorrosive Behavior on Aluminum Metal in Acidic Medium. J Inorg Organomet Polym 32, 895–911 (2022). https://doi.org/10.1007/s10904-021-02145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02145-4

Keywords

Navigation