Skip to main content
Log in

Dual-Responsive Bilayer Reactor Capable of Non-Tandem/Tandem Adjustable Catalytic Ability

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

To address the rising challenges in self-controlled tandem processes, a catalytic reactor with two reversely-responsive layers was fabricated, for which the two layers acted as the carriers of two different-type active sites so as to achieve the adjustable catalytic ability. This first layer was a shape-memory copolymer consisting of 2-acrylamido-2-methylpropane sulfonic acid and 1-heptene. Given the “frozen” domains in the copolymer at low temperatures, the channel of the substrate became closed. At middle temperatures, the channel of the substrate became open as a result of the activation of the copolymer. The second layer was a copolymer embedding Ag nanoparticles made of polymeric 2-(trifluoromethyl) acrylic acid and 2-vinylpyridine. This layer showed the “closed” channel at low temperatures due to the electrostatic interactions between the two polymeric components, which inhibited the entry of reactants. At higher temperatures, as the polymeric interactions at this layer were broken, the channel in this layer became open for the reactants. In combination with the contained acidic sites and catalytic Ag nanoparticles sites in the two layers, which were individually responsible for catalytic hydrolysis and reduction, the reactor did not show substantive catalytic ability at low temperatures due to the closed channels in both the two layers. At middle temperatures, the reactor ran with simple hydrolysis due to the open channel in the first layer which contained acidic sites. At higher temperatures, the reactor ran with tandem catalytic processes because of the open channels in the two layers. Hence, the design of the dual-responsive catalytic reactor acquired the non-tandem/tandem self-controlled catalytic ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R.Y. Pinter, U. Alon, H. Margalit, Proc. Natl. Acad. Sci. 101, 5934 (2004)

    Article  CAS  Google Scholar 

  2. M.C. Good, J.G. Zalatan, W.A. Lim, Science 332, 680 (2011)

    Article  CAS  Google Scholar 

  3. L. Chen, X. Zhang, J. Zhou, Z. Xie, Q. Kuang, L. Zheng, Nanoscale 11, 3292 (2019)

    Article  CAS  Google Scholar 

  4. H. Liu, F. Xi, W. Sun, N. Yang, E. Gao, Inorg. Chem. 55, 5753 (2016)

    Article  CAS  Google Scholar 

  5. P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301 (2010)

    Article  CAS  Google Scholar 

  6. D.J. Martin, G. Liu, S.J. Moniz, Y. Bi, A.M. Beale, J. Ye, J. Tang, Chem. Soc. Rev. 44, 7808 (2015)

    Article  CAS  Google Scholar 

  7. K.C. Nicolaou, D.J. Edmonds, P.G. Bulger, Angew. Chem. Int. Ed. 45, 7134 (2006)

    Article  CAS  Google Scholar 

  8. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016)

    Article  CAS  Google Scholar 

  9. Y. Yamada, C.K. Tsung, W. Huang, Z. Huo, S.E. Habas, T. Soejima, C.E. Aliaga, G.A. Somorjai, P. Yang, Nat. Chem. 3, 372 (2011)

    Article  CAS  Google Scholar 

  10. J. Su, C. Xie, C. Chen, Y. Yu, G. Kennedy, G.A. Somorjai, P. Yang, J. Am. Chem. Soc. 138, 11568 (2016)

    Article  CAS  Google Scholar 

  11. A. Corma, J. Navas, M.J. Sabater, Chem. Rev. 118, 1410 (2018)

    Article  CAS  Google Scholar 

  12. H. Che, S. Cao, J.C.M. van Hest, J. Am. Chem. Soc. 140, 5356 (2018)

    Article  CAS  Google Scholar 

  13. P. Xiao, S. Wu, X. Shen, M. Zhu, S. Li, ChemCatChem 10, 5231 (2018)

    Article  CAS  Google Scholar 

  14. Z. Xia, W. Wei, M. Zhu, S. Wu, X. Shen, S. Li, eXPRESS Polym. Lett. 14, 12 (2020)

    CAS  Google Scholar 

  15. T. Chen, W. Wei, Y. Zhang, M. Ji, S. Li, J. Inorg. Organomet. Polym. Mater. 31, 2521 (2021)

    Article  CAS  Google Scholar 

  16. C. Zuo, W. Wei, Q. Zhou, S. Wu, S. Li, ChemistrySelect 2, 6149 (2017)

    Article  CAS  Google Scholar 

  17. W. Wei, P. Xiao, V. K. Thakur, I. Chianella, S. Li, Mater. Today Chem. 17, 100279 (2020)

  18. W. Wei, V. K. Thakur, Y. M. J. Chew, S. Li, Mater. Today Chem. 17, 100286 (2020)

  19. W. Wei, T. Zhou, S. Wu, X. Shen, M. Zhu, S. Li, RSC Adv. 8, 1610 (2018)

    Article  CAS  Google Scholar 

  20. S. Wu, Q. Zhang, Y. Deng, X. Li, Z. Luo, B. Zheng, S. Dong, J. Am. Chem. Soc. 142, 448 (2020)

    Article  CAS  Google Scholar 

  21. C. Wang, J. Bai, Y. Liu, X. Jia, X. Jiang, A.C.S. Biomater, Sci. Eng. 2, 2011 (2016)

    CAS  Google Scholar 

  22. Q. Chen, D. Wei, H. Chen, L. Zhu, C. Jiao, G. Liu, L. Huang, J. Yang, L. Wang, J. Zheng, Macromolecules 48, 8003 (2015)

    Article  CAS  Google Scholar 

  23. Y. Liu, C.Z. Huang, Nanoscale 5, 7458 (2013)

    Article  CAS  Google Scholar 

  24. F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488, 151 (2019)

    Article  CAS  Google Scholar 

  25. R. Luo, M. Zhu, X. Yuan, S. Li, RSC Adv. 5, 5598 (2015)

    Article  CAS  Google Scholar 

  26. Y. Lu, W. Wei, M. Zhu, S. Wu, X. Shen, S. Li, J. Inorg. Organomet. Polym. Mater. 30, 2039 (2020)

    Article  CAS  Google Scholar 

  27. Y. Han, X. Yuan, M. Zhu, S. Li, M. Whitcombe, S. Piletsky, Adv. Funct. Mater. 24, 4996 (2014)

    Article  CAS  Google Scholar 

  28. Y. Zhou, M. Zhu, S. Li, J. Mater. Chem. A 2, 6834 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjing Wei or Songjun Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest concerning in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Zhu, M., Shen, X. et al. Dual-Responsive Bilayer Reactor Capable of Non-Tandem/Tandem Adjustable Catalytic Ability. J Inorg Organomet Polym 32, 656–666 (2022). https://doi.org/10.1007/s10904-021-02144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02144-5

Keywords

Navigation