Skip to main content
Log in

Fe3O4@Au@SiO2 Core–Shell Nanoparticles: Synthesis,  Characterization, Investigations of Its Influence on Cell Lines Using  a NIR Laser and an Alternating Magnetic Field

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Core–shell nanoparticles (CSNPs) have attracted attention in biomedical applications as they have highly useful materials with modified characteristics, such as high stability, dispersibility, higher permeability to certain target cells and reduction in consumption of precious materials. Synthesis of core–multishell nanoparticles with suitable sizes, structural characteristics and absorption using simple methods continues to be a challenge. In this study, \({\text{F}\text{e}}_{3}{\text{O}}_{4}@\text{A}\text{u} @{\text{S}\text{i}\text{O}}_{2}\) CSNPs were synthesized in three stages to control their size and the potential for tuning their properties. Field emission scanning electron microscope images confirmed that \({\text{F}\text{e}}_{3}{\text{O}}_{4}@\text{A}\text{u} @{\text{S}\text{i}\text{O}}_{2}\) CSNPs have a small particle size of about 22.5 nm, average crystalline size in X-ray diffractometer analysis was 22.8 nm, stability was about − 49.1 mV, and synthesis with magnetic and optical properties improved their biocompatibility. Treatment of CAL-51 and HBL-100 cell lines by \({\text{F}\text{e}}_{3}{\text{O}}_{4}@\text{A}\text{u} @{\text{S}\text{i}\text{O}}_{2}\) CSNPs under NIR laser and alternating magnetic field generated enough heat to increase cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.M. Goswami, C. Dey, A. Bandyopadhyay, D. Sarkar, M. Ahir, J. Magn. Magn. Mater. 417, 376 (2016). https://doi.org/10.1016/j.jmmm.2016.05.069

    Article  CAS  Google Scholar 

  2. K. Xia, Y. Lyu, W. Yuan, G. Wang, H. Stratton, S. Zhang, J. Wu, Front. Oncol. 9, 250 (2019). https://doi.org/10.3389/fonc.2019.00250

    Article  PubMed  PubMed Central  Google Scholar 

  3. R. Kappiyoor, M. Liangruksa, R. Ganguly, I.K. Puri, J. Appl. Phys. 108, 94702 (2010). https://doi.org/10.1063/1.3500337

    Article  CAS  Google Scholar 

  4. T.K. Das, S. Ganguly, S. Ghosh, S. Remanan, S.K. Ghosh, N.C. Das, Colloid Interface Sci. Commun. 33, 100218 (2019). https://doi.org/10.1016/j.colcom.2019.100218

    Article  CAS  Google Scholar 

  5. S. Ganguly, S. Margel, Biotechnol. Adv. (2020). https://doi.org/10.1016/j.biotechadv.2020.107611

    Article  PubMed  Google Scholar 

  6. J.-P. Fortin, F. Gazeau, C. Wilhelm, Eur. Biophys. J. 37, 223 (2008). https://doi.org/10.1007/s00249-007-0197-4

    Article  CAS  PubMed  Google Scholar 

  7. Z. Liao, H. Wang, R. Lv, P. Zhao, X. Sun, S. Wang, W. Su, R. Niu, J. Chang, Langmuir 27, 3100 (2011). https://doi.org/10.1021/la1050157

    Article  CAS  PubMed  Google Scholar 

  8. R.M. Abdallah, R.M.S. Al-Haddad, J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1829/1/012022

    Article  Google Scholar 

  9. G. Armelles, A. Cebollada, A. García-Martín, M.U. González, Adv. Opt. Mater. 1, 10 (2013). https://doi.org/10.1002/adom.201200011

    Article  Google Scholar 

  10. L. Dykman, N. Khlebtsov, Chem. Soc. Rev. 41, 2256 (2012). https://doi.org/10.1039/C1CS15166E

    Article  CAS  PubMed  Google Scholar 

  11. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz,  J. Phys. Chem. B (2003). https://doi.org/10.1021/jp026731y

  12. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006). https://doi.org/10.1021/jp057170o

    Article  CAS  PubMed  Google Scholar 

  13. M. Abbas, B.P. Rao, M.N. Islam, S.M. Naga, M. Takahashi, C. Kim, Ceram. Int. 40, 1379 (2014). https://doi.org/10.1016/j.ceramint.2013.07.019

    Article  CAS  Google Scholar 

  14. X. Hou, X. Wang, R. Liu, H. Zhang, X. Liu, Y. Zhang, RSC Adv. 7, 18844 (2017). https://doi.org/10.1039/C7RA00925A

    Article  CAS  Google Scholar 

  15. M.R. Ibarra, N.G. Khlebtsov, J. Appl. Phys. (2019). https://doi.org/10.1063/1.5130560

    Article  Google Scholar 

  16. K. Yang, Z. Dai, Y. Chu, G. Chen, Micro–Nano Lett. 11, 129 (2016). https://doi.org/10.1049/mnl.2015.0435

    Article  CAS  Google Scholar 

  17. M. Amatatongchai, J. Sitanurak, W. Sroysee, S. Sodanat, S. Chairam, P. Jarujamrus, D. Nacapricha, P.A. Lieberzeit, Anal. Chim. Acta 1077, 255 (2019). https://doi.org/10.1016/j.aca.2019.05.047

    Article  CAS  PubMed  Google Scholar 

  18. M.A. Dheyab, A.A. Aziz, P.M. Khaniabadi, M.S. Jameel, Photodiagn. Photodyn. Ther. 33, 102177 (2021). https://doi.org/10.1016/j.pdpdt.2021.102177

    Article  CAS  Google Scholar 

  19. N. Bohmer, A. Jordan, Beilstein J. Nanotechnol. 6, 167 (2015). https://doi.org/10.3762/bjnano.6.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.J. Abdulghani, W.M. Al-Ogedy, Baghdad Sci. J. (2016). https://doi.org/10.21123/bsj.2016.13.2.0331

    Article  Google Scholar 

  21. E.A. Hussein, M.M. Zagho, B.R. Rizeq, N.N. Younes, G. Pintus, K.A. Mahmoud, G.K. Nasrallah, A.A. Elzatahry, Int. J. Nanomed. 14, 4529 (2019). https://doi.org/10.2147/IJN.S202208

    Article  CAS  Google Scholar 

  22. A. Maximenko, J. Depciuch, N. Łopuszyńska, M. Stec, Ż Światkowska-Warkocka, V. Bayev, P.M. Zieliński, J. Baran, J. Fedotova, W.P. Węglarz, RSC Adv. 10, 26508 (2020). https://doi.org/10.1039/D0RA03699D

    Article  CAS  Google Scholar 

  23. T.A. Saleh, Environ. Sci. Pollut. Res. 22, 16721 (2015). https://doi.org/10.1007/s11356-015-4866-z

    Article  CAS  Google Scholar 

  24. E.A. Kwizera, E. Chaffin, Y. Wang, X. Huang, RSC Adv. 7, 17137 (2017). https://doi.org/10.1039/C7RA01224A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Caizer, Handbook of Nanoparticles  (Springer, Berlin, 2016), p. 475. https://doi.org/10.1007/978-3-319-13188-7_24-1

  26. R.L.S. de Silva, A.T. de Figueiredo, C.M. Barrado, M.H. Sousa, Mater. Res. 20, 1317 (2017). https://doi.org/10.1590/1980-5373-MR-2016-0838

    Article  CAS  Google Scholar 

  27. S. Stafford, R. Serrano Garcia, Y.K. Gun’ko, Appl. Sci. 8, 97 (2018). https://doi.org/10.3390/app8010097

    Article  CAS  Google Scholar 

  28. M.F. Contreras, R. Sougrat, A. Zaher, T. Ravasi, J. Kosel, Int. J. Nanomed. 10, 2141 (2015). https://doi.org/10.2147/IJN.S77081

    Article  CAS  Google Scholar 

  29. H.S. Huang, J.F. Hainfeld, Int. J. Nanomed. 8, 2521 (2013). https://doi.org/10.2147/IJN.S43770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rusul Mohammed Abdallah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, R.M., Al-Haddad, R.M.S. Fe3O4@Au@SiO2 Core–Shell Nanoparticles: Synthesis,  Characterization, Investigations of Its Influence on Cell Lines Using  a NIR Laser and an Alternating Magnetic Field. J Inorg Organomet Polym 32, 478–485 (2022). https://doi.org/10.1007/s10904-021-02136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02136-5

Keywords

Navigation