Skip to main content

Advertisement

Log in

Evaluation of Stability and Catalytic Activity in Supercritical Water of Zinc Oxide Samples Prepared by the Sol–Gel Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nano-and micro-sized ZnO samples were synthesized by the sol–gel method. Physical and thermal stability of ZnO samples were tested in supercritical water (SCW) and supercritical water gasification (SCWG) of formaldehyde. ZnO calcined at 350 °C (ZnO-350) has spherical particles with an average diameter of 150 nm. After SCW and SCWG treatments, the particle size of ZnO-350 increased and its roughness decreased as a result of agglomeration. Increasing the calcination temperature of ZnO from 350 to 900 °C increased crystallinity and the estimated crystal size of ZnO. The particles of ZnO calcined at 900 °C converted to hexagonal particles from spherical particles by the dissolution of coke precursors in SCW. Compared with the non-catalytic gasification of formaldehyde, the presence of ZnO increased the conversion of formaldehyde and hydrogen formation. The increasing calcination temperatures of ZnO enhanced hydrogen formation, which might be due to the formation of oxygen vacancies on the ZnO1-x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kruse, J. Supercrit. Fluids 47, 391 (2009)

    Article  CAS  Google Scholar 

  2. G. van Rossum, B. Potic, S.R.A. Kersten, W.P.M. van Swaaij, Catal. Today 145, 10 (2009)

    Article  Google Scholar 

  3. O. Norouzi, F. Safari, S. Jafarian, A. Tavasoli, A. Karimi, Energy Convers. Manag. 141, 63 (2017)

    Article  CAS  Google Scholar 

  4. F. Safari, N. Javani, Z. Yumurtaci, Int. J. Hydrogen Energy 43, 1071 (2018)

    Article  CAS  Google Scholar 

  5. L. Liu, X. Yang, N. Ma, H. Liu, Y. Xia, C. Chen, D. Yang, X. Yao, Small 12, 1295 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. J. Feng, X. Xue, X. Li, W. Li, X. Guo, K. Liu, Fuel Process. Technol. 130, 96 (2015)

    Article  CAS  Google Scholar 

  7. M.J. Sheikhdavoodi, M. Almassi, M. Ebrahimi-Nik, A. Kruse, H. Bahrami, J. Energy Inst. 88, 450 (2015)

    Article  CAS  Google Scholar 

  8. J. Louw, C.E. Schwarz, A.J. Burger, Bioresour. Technol. 201, 111 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. Z. Ge, H. Jin, L. Guo, Int. J. Hydrog. Energy 39, 19583 (2014)

    Article  CAS  Google Scholar 

  10. R. Lan, H. Jin, L. Guo, Z. Ge, S. Guo, X. Zhang, Energy Fuels 28, 6911 (2014)

    Article  CAS  Google Scholar 

  11. L. Guo, H. Jin, Y. Lu, J. Supercrit. Fluids 96, 144 (2015)

    Article  CAS  Google Scholar 

  12. C. Cao, Y. Zhang, W. Cao, H. Jin, L. Guo, Z. Huo, Catal. Lett. 147, 828 (2017)

    Article  CAS  Google Scholar 

  13. E.G. Baker, D.C. Elliott, L. JohnSealock Jr., Ind. Eng. Chem. Res. 32, 1542 (1993)

    Article  Google Scholar 

  14. D.C. Elliott, Biofuels Bioprod. Biorefin. 2, 254 (2008)

    Article  CAS  Google Scholar 

  15. Z.Y. Ding, M.A. Frisch, L. Li, E.F. Gloyna, Ind. Eng. Chem. Res. 35, 3257 (1996)

    Article  CAS  Google Scholar 

  16. T.M. Yeh, J.G. Dickinson, A. Franck, S. Linic, L.T. Thompson, P.E. Savage, J. Chem. Technol. Biotechnol. 88, 13 (2013)

    Article  CAS  Google Scholar 

  17. H. Jin, Y. Lu, L. Guo, X. Zhang, A. Pei, Adv. Condens. Matter Phys. 2014, 1 (2014)

    Article  Google Scholar 

  18. P. Azadi, R. Farnood, Int. J. Hydrogen Energy 36, 9529 (2011)

    Article  CAS  Google Scholar 

  19. H. Xiong, H.N. Pham, A.K. Datye, Green Chem. 16, 4627 (2014)

    Article  CAS  Google Scholar 

  20. J.N. Jocz, L.T. Thompson, P.E. Savage, Chem. Mater. 30, 1218 (2018)

    Article  CAS  Google Scholar 

  21. N. Roy, S. Chakraborty, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.06.264

  22. D. Medina Cruz, E. Mostafavi, A. Vernet-Crua, H. Barabadi, V. Shah, J.L. Cholula-Díaz, G. Guisbiers, T.J. Webster, J. Phys. Mater. 3, 034005 (2020)

    Article  Google Scholar 

  23. V.S. Bhati, M. Hojamberdiev, M. Kumar, Energy Rep. 6, 46 (2020)

    Article  Google Scholar 

  24. Y. Lee, S. Kim, D. Kim, C. Lee, H. Park, J.H. Lee, Appl. Surf. Sci. 509, 145328 (2020)

    Article  CAS  Google Scholar 

  25. H.Q. Liu, C.B. Yao, G.Q. Jiang, Y. Cai, J. Alloys Compd. 847, 156524 (2020)

    Article  CAS  Google Scholar 

  26. S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 10, 18 (2009)

    Article  Google Scholar 

  27. M. Massaro, M. Casiello, L. D’Accolti, G. Lazzara, A. Nacci, G. Nicotra, R. Noto, A. Pettignano, C. Spinella, S. Riela, Appl. Clay Sci. 189, 105527 (2020)

    Article  CAS  Google Scholar 

  28. S. Goktas, A. Goktas, J. Alloys Compd. 863, 158734 (2021)

    Article  CAS  Google Scholar 

  29. S.N. Zailan, A. Bouaissi, N. Mahmed, M.M.A.B. Abdullah, J. Inorg. Organomet. Polym. Mater. 30, 2007 (2020)

    Article  CAS  Google Scholar 

  30. 1.S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.O. Ajala, A.K. Mohammed, Appl. Water Sci. 10, 49 (2020)

  31. S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S.K. Oruganti, ECS J. Solid State Sci. Technol. 10, 023002 (2021)

    Article  CAS  Google Scholar 

  32. A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331 (2013)

  33. J. Rosowska, J. Kaszewski, B. Witkowski, Wachnicki, I. Kuryliszyn-Kudelska, M. Godlewski, Opt. Mater. (Amst). 109, 110089 (2020)

  34. D. Zhao, J. Li, S. Sathasivam, C.J. Carmalt, RSC Adv. 10, 34527 (2020)

  35. G. Otis, M. Ejgenberg, Y. Mastai, Nanomaterials 11, 238 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. X. Zhang, J. Chen, M. Wen, H. Pan, S. Shen, Phys. B Condens. Matter 602, 412545 (2021)

    Article  CAS  Google Scholar 

  37. J. Ding, S. Chen, N. Han, Y. Shi, P. Hu, H. Li, J. Wang, Ceram. Int. 46, 15152 (2020)

    Article  CAS  Google Scholar 

  38. H. Widiyandari, S. Wijayanti, A. Prasetio, A. Purwanto, Opt. Mater. (Amst). 107, 110077 (2020)

    Article  CAS  Google Scholar 

  39. B. Manikandan, T. Endo, S. Kaneko, K.R. Murali, R. John, J. Mater. Sci. Mater. Electron. 29, 9474 (2018)

    Article  CAS  Google Scholar 

  40. K. Kaviyarasu, C. Maria Magdalane, D. Jayakumar, Y. Samson, A.K.H. Bashir, M. Maaza, D. Letsholathebe, A.H. Mahmoud, J. Kennedy, J. King Saud. Univ. Sci. 32, 1516 (2020)

    Article  Google Scholar 

  41. C.M. Magdalane, K. Kaviyarasu, G.M.A. Priyadharsini, A.K.H. Bashir, N. Mayedwa, N. Matinise, A.B. Isaev, N. Abdullah Al-Dhabi, M.V. Arasu, S. Arokiyaraj, J. Kennedy, M. Maaza, J. Mater. Res. Technol. 8, 2898 (2019)

    Article  CAS  Google Scholar 

  42. S.Y. Chu, T.M. Yan, S.L. Chen, J. Mater. Sci. Lett. 19, 349 (2000)

    Article  CAS  Google Scholar 

  43. N. Jaman, M. Sazedul Hoque, S. Chandra Chakraborty, M. Enamul Hoq, H. Pada Seal, Int. J. Fish. Aquat. Stud. 2, 94 (2015)

    Google Scholar 

  44. K. Hayat, M.A. Gondal, M.M. Khaled, S. Ahmed, A.M. Shemsi, Appl. Catal. A Gen. 393, 122 (2011)

    Article  CAS  Google Scholar 

  45. Z.N. Kayani, F. Saleemi, I. Batool, Appl. Phys. A 119, 713 (2015)

  46. U.N. Maiti, S.F. Ahmed, M.K. Mitra, K.K. Chattopadhyay, Mater. Res. Bull. 44, 134 (2009)

    Article  CAS  Google Scholar 

  47. A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, J. Mol. Struct. 1196, 332 (2019)

  48. L. Qian, Y. Zhao, S. Sun, H. Che, H. Chen, D. Wang, Fuel Process. Technol. 118, 327 (2014)

    Article  CAS  Google Scholar 

  49. Y. Zhao, D. Feng, Y. Zhang, Y. Huang, S. Sun, Fuel Process. Technol. 141, 54 (2016)

    Article  CAS  Google Scholar 

  50. H. Jin, X. Zhao, X. Su, C. Zhu, C. Cao, L. Guo, Int. J. Hydrogen Energy 42, 4943 (2017)

    Article  CAS  Google Scholar 

  51. H.-W. Ryu, B.-S. Park, S.A. Akbar, W.-S. Lee, K.-J. Hong, Y.-J. Seo, D.-C. Shin, J.-S. Park, G.-P. Choi, Sens. Actuators B Chem. 96, 717 (2003)

    Article  CAS  Google Scholar 

  52. D. Nesheva, V. Dzhurkov, I. Stambolova, V. Blaskov, I. Bineva, J.M. Calderon Moreno, S. Preda, M. Gartner, T. Hristova-Vasileva, M. Shipochka, Mater. Chem. Phys. 209, 165 (2018)

    Article  CAS  Google Scholar 

  53. D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, T. Fukuda, Prog. Cryst. Growth Charact. Mater. 52, 280 (2006)

    Article  CAS  Google Scholar 

  54. C. Yang, J. Kou, H. Fan, Z. Tian, W. Kong, J. Shangguan, Langmuir 35, 7759 (2019)

    Article  CAS  PubMed  Google Scholar 

  55. B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Curr. Appl. Phys. 11, 762 (2011)

    Article  Google Scholar 

  56. S. Gangil, A. Nakamura, Y. Ichikawa, K. Yamamoto, J. Ishihara, T. Aoki, J. Temmyo, J. Cryst. Growth 298, 486 (2007)

    Article  CAS  Google Scholar 

  57. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett. 80, 1909 (2002)

    Article  CAS  Google Scholar 

  58. S.K. Singh, D. Dutta, S. Das, A. Dhar, M.C. Paul, Mater. Sci. Semicond. Process. 107, 104819 (2020)

    Article  CAS  Google Scholar 

  59. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, B. Stefanov, Thin Solid Films 646, 132 (2018)

    Article  CAS  Google Scholar 

  60. T. Jannane, M. Manoua, N. Fazouan, A. El Hichou, A. Almaggoussi, A. Liba, Superlattices Microstruct. 147, 106689 (2020)

    Article  CAS  Google Scholar 

  61. S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen, S. Sen, Mater. Chem. Phys. 74, 83 (2002)

    Article  CAS  Google Scholar 

  62. M. Iwamoto, Y. Yoda, N. Yamazoe, T. Seiyama, J. Phys. Chem. 82, 2564 (1978)

    Article  CAS  Google Scholar 

  63. E. Sasaoka, S. Hirano, S. Kasaoka, Y. Sakata, Energy Fuels 8, 763 (1994)

    Article  CAS  Google Scholar 

  64. S. Luo, J. Liu, Z. Wu, J. Phys. Chem. C 123, 11772 (2019)

    Article  CAS  Google Scholar 

  65. Y. Lv, W. Yao, X. Ma, C. Pan, R. Zong, Y. Zhu, Catal. Sci. Technol. 3, 3136 (2013)

    Article  CAS  Google Scholar 

  66. S. Derrouiche, C. La Fontaine, G. Thrimurtulu, S. Casale, L. Delannoy, H. Lauron-Pernot, C. Louis, Catal. Sci. Technol. 6, 6794 (2016)

    Article  CAS  Google Scholar 

  67. W. Wang, X. Li, Y. Zhang, R. Zhang, H. Ge, J. Bi, M. Tang, Catal. Sci. Technol. 7, 4413 (2017)

    Article  CAS  Google Scholar 

  68. F.L.P. Resende, P.E. Savage, Ind. & Eng. Chem. Res. 49, 2694 (2010)

    Article  CAS  Google Scholar 

  69. J. Yu, P.E. Savage, Ind. Eng. Chem. Res. 37, 2 (1998)

    Article  CAS  Google Scholar 

  70. M. Watanabe, M. Osada, H. Inomata, K. Arai, A. Kruse, Appl. Catal. A Gen. 245, 333 (2003)

  71. G. Akgül, A. Kruse, J. Supercrit. Fluids 73, 43 (2013)

    Article  Google Scholar 

  72. Y.J. Fan, W. Zhu, M. Gong, Y. Su, C.Y. Wang, Int. J. Hydrogen Energy 43, 13090 (2018)

    Article  CAS  Google Scholar 

  73. M.B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlögl, M. Muhler, O. Hinrichsen, Angew. Chemie Int. Ed. 53, 7043 (2014)

    Article  CAS  Google Scholar 

  74. F. Studt, M. Behrens, E.L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E. Frei, J.B. Varley, F. Abild-Pedersen, J.K. Nørskov, R. Schlögl, ChemCatChem 7, 1105 (2015)

    Article  CAS  Google Scholar 

  75. P. Zhang, Y. Araki, X. Feng, H. Li, Y. Fang, F. Chen, L. Shi, X. Peng, Y. Yoneyama, G. Yang, N. Tsubaki, Fuel 268, 117213 (2020)

    Article  CAS  Google Scholar 

  76. C. Levy, M. Watanabe, Y. Aizawa, H. Inomata, K. Sue, Int. J. Appl. Ceram. Technol. 3, 337 (2006)

  77. A. Sina, T. Yumak, V. Balci, A. Kruse, J. Supercrit. Fluids 56, 179 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support achieved from The Scientific and Technological Research Council of Turkey (TUBITAK) (213M398) and Sivas Cumhuriyet University Research Scientific Funding (M-742).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayten Ates.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, A., Hatipoglu, H. Evaluation of Stability and Catalytic Activity in Supercritical Water of Zinc Oxide Samples Prepared by the Sol–Gel Method. J Inorg Organomet Polym 31, 4581–4593 (2021). https://doi.org/10.1007/s10904-021-02066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02066-2

Keywords

Navigation