Skip to main content

Advertisement

Log in

Oxygen Vacancy-Fe2O3@polyaniline Composites Directly Grown on Carbon Cloth as a High Stable Electrode for Symmetric Supercapacitors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Herein, we fabricated oxygen vacancy-Fe2O3@polyaniline (O-Fe2O3@PANI) composites directly grown on surface of carbon cloth via successively hydrothermal process, annealing process, chemical reduction, and in situ polymerization. Polyaniline (PANI) is fabricated in situ on oxygen vacancy-Fe2O3 (O-Fe2O3), and forms a porous PANI skeleton at the same time, thus forming a hierarchical structure of O-Fe2O3 particles connected by conductive skeleton. The designed O-Fe2O3@PANI not only shows enhanced cycling stability (90% after 10,000 cycles at 10 A g−1), but also exhibits an improved specific capacitance (309 F g−1 at 0.5 A g−1). Furthermore, the symmetrical supercapacitor (SSC) assembled by O-Fe2O3@PANI presents high energy density of 12.125 Wh kg−1 at high power density of 250 W kg−1 and notable cycling life (100% retention over 10,000 cycles). The results demonstrate that the O-Fe2O3@PANI electrode is promising as electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Zhai, H.E. Karahan, C. Wang, Z. Pei, L. Wei, Y. Chen, 1D supercapacitors for emerging electronics: current status and future directions. Adv. Mater. 32, 1902387 (2020)

    Article  CAS  Google Scholar 

  2. P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki, S. Wang, J. Zhang, G. Wang, 2D superlattices for efficient energy storage and conversion. Adv. Mater. 32, 1902654 (2020)

    Article  CAS  Google Scholar 

  3. J. Xu, N. Yang, S. Heuser, S. Yu, A. Schulte, H. Schönherr, X. Jiang, Achieving ultrahigh energy densities of supercapacitors with porous titanium carbide/boron-doped diamond composite electrodes. Adv Energy Mater. 9, 1803623 (2019)

    Article  CAS  Google Scholar 

  4. Y. Liu, Z. Wang, Y. Zhong, X. Xu, J.-P.M. Veder, M.R. Rowles, M. Saunders, R. Ran, Z. Shao, Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-δ perovskite. Chem Eng J. 390, (2020)

    Article  CAS  Google Scholar 

  5. Z. Chen, Y. Yang, Z. Ma, T. Zhu, L. Liu, J. Zheng, X. Gong, All-solid-state asymmetric supercapacitors with metal selenides electrodes and ionic conductive composites electrolytes. Adv Funct Mater. 29, 1904182 (2019)

    Article  CAS  Google Scholar 

  6. C. Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni–Co MOFs for foldable all-solid-state supercapacitors with high specific energy. J Mater Chem A. 7, 4998–5008 (2019)

    Article  CAS  Google Scholar 

  7. X. Zheng, L. Yao, Y. Qiu, S. Wang, K. Zhang, Core-sheath porous polyaniline nanorods/graphene fiber-shaped supercapacitors with high specific capacitance and rate capability. ACS Appl Energy Mater. 2, 4335–4344 (2019)

    Article  CAS  Google Scholar 

  8. T. Liu, L. Zhang, W. You, J. Yu, Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small. 14, 1702407 (2018)

    Article  CAS  Google Scholar 

  9. Y. Wang, Y.-Z. Zhang, Y.-Q. Gao, G. Sheng, J.E. ten Elshof, Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano Energy. 68, (2020)

    Article  CAS  Google Scholar 

  10. X. Zou, L. Ji, H.-Y. Hsu, K. Zheng, Z. Pang, X. Lu, Designed synthesis of SiC nanowire-derived carbon with dual-scale nanostructures for supercapacitor applications. J Mater Chem A. 6, 12724–12732 (2018)

    Article  CAS  Google Scholar 

  11. H. Jia, Z. Wang, C. Li, X. Si, X. Zheng, Y. Cai, J. Lin, H. Liang, J. Qi, J. Cao, J. Feng, W. Fei, Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors. J Mater Chem A. 7, 6686–6694 (2019)

    Article  CAS  Google Scholar 

  12. Y. Zhou, C.H. Wang, W. Lu, L. Dai, Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv Mater. 32, 1902779 (2020)

    Article  CAS  Google Scholar 

  13. C. Zhu, H. Wang, C. Guan, Recent progress on hollow array architectures and their applications in electrochemical energy storage. Nanoscale Horiz. 5, 1188–1199 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. M. Zhu, C. Jia, Y. Wang, Z. Fang, J. Dai, L. Xu, D. Huang, J. Wu, Y. Li, J. Song, Y. Yao, E. Hitz, Y. Wang, L. Hu, Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics. ACS Appl Mater Interfaces. 10, 28566–28571 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zhu, S. An, X. Sun, D. Lan, J. Cui, Y. Zhang, W. He, Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance. Chem Eng J. 383, (2020)

    Article  CAS  Google Scholar 

  16. Y. Zhu, X. Ji, S. Cheng, Z.Y. Chern, J. Jia, L. Yang, H. Luo, J. Yu, X. Peng, J. Wang, W. Zhou, M. Liu, Fast energy storage in two-dimensional MoO2 enabled by uniform oriented tunnels. ACS Nano. 13, 9091–9099 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. Z. Zhu, Z. Chen, G. Lin, Y. Ge, Y. Tu, H. Chen, S. Ye, X. Yang, Buckled amorphous hollow carbon spheres: facile fabrication, buckling process, and applications as electrode materials for supercapacitors. ACS Appl Mater Interfaces. 11, 30116–30124 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. L. Pan, G. Yu, D. Zhai, H.R. Lee, W. Zhao, N. Liu, H. Wang, B.C.K. Tee, Y. Shi, Y. Cui, Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci. 109, 9287–9292 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Shi, K.A. Owusu, X. Xu, T. Zhu, G. Zhang, W. Yang, L. Mai, 1D carbon-based nanocomposites for electrochemical energy storage. Small. 15, 1902348 (2019)

    Article  CAS  Google Scholar 

  20. H.-P. Feng, L. Tang, G.-M. Zeng, J. Tang, Y.-C. Deng, M. Yan, Y.-N. Liu, Y.-Y. Zhou, X.-Y. Ren, S. Chen, Carbon-based core–shell nanostructured materials for electrochemical energy storage. J Mater Chem A. 6, 7310–7337 (2018)

    Article  CAS  Google Scholar 

  21. S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev. 120, 2811–2878 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. J. Wang, X. Wang, S.W. Lee, Q. Zhang, Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated cu nanowire network structure as the electrode. ACS Appl Mater Interfaces. 11, 40481–40489 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. B. Chen, W. Wu, C. Li, Y. Wang, Y. Zhang, L. Fu, Y. Zhu, L. Zhang, Y. Wu, Oxygen/phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors. Sci Rep. 9, 5431 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. P. Zhao, N. Wang, W. Hu, S. Komarneni, Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceram Int. 45, 10420–10428 (2019)

    Article  CAS  Google Scholar 

  25. Y. Ma, H. Sheng, W. Dou, Q. Su, J. Zhou, E. Xie, W. Lan, Fe2O3 nanoparticles anchored on the Ti3C2Tx MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance. ACS Appl Mater Interfaces. 12, 41410–41418 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Tian, X. Hu, Y. Wang, C. Li, X. Wu, Fe2O3 nanoparticles decorated on graphene-carbon nanotubes conductive networks for boosting the energy density of all-solid-state asymmetric supercapacitor. ACS Sustain Chem Eng. 7, 9211–9219 (2019)

    Article  CAS  Google Scholar 

  27. J. Ma, X. Guo, Y. Yan, H. Xue, H. Pang, FeOx-based materials for electrochemical energy storage. Adv Sci. 5, 1700986 (2018)

    Article  CAS  Google Scholar 

  28. J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang, S. Luo, X. Zhou, C. Zhang, X. Gu, C. Hu, Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy. 57, 379–387 (2019)

    Article  CAS  Google Scholar 

  29. Y. Xue, Y. Wang, A review of the alpha-Fe2O3 (hematite) nanotube structure: recent advances in synthesis, characterization, and applications. Nanoscale. 12, 10912–10932 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. H. Liang, C. Xia, A.-H. Emwas, D.H. Anjum, X. Miao, H.N. Alshareef, Phosphine plasma activation of α-Fe2O3 for high energy asymmetric supercapacitors. Nano Energy. 49, 155–162 (2018)

    Article  CAS  Google Scholar 

  31. X. Wang, M. Zhang, E. Liu, F. He, C. Shi, C. He, J. Li, N. Zhao, Three-dimensional core-shell Fe2O3@carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries. Appl Surf Sci. 390, 350–356 (2016)

    Article  CAS  Google Scholar 

  32. S. Sun, T. Zhai, C. Liang, S.V. Savilov, H. Xia, Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy. 45, 390–397 (2018)

    Article  CAS  Google Scholar 

  33. F. Han, J. Xu, J. Zhou, J. Tang, W. Tang, Oxygen vacancy-engineered Fe2O3 nanoarrays as free-standing electrodes for flexible asymmetric supercapacitors. Nanoscale. 11, 12477–12483 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. X.F. Lu, X.Y. Chen, W. Zhou, Y.X. Tong, G.R. Li, alpha-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Interfaces. 7, 14843–14850 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. M. Zhang, K. Chen, X. Chen, X. Peng, X. Sun, D. Xue, Ethylenediamine-assisted crystallization of Fe2O3 microspindles with controllable size and their pseudocapacitance performance. CrystEngComm. 17, 1521–1525 (2015)

    Article  CAS  Google Scholar 

  36. M. Li, X. Li, Z. Li, Y. Wu, Hierarchical nanosheet-built CoNi2S4 nanotubes coupled with carbon-encapsulated carbon Nanotubes@Fe2O3 composites toward high-performance aqueous hybrid supercapacitor devices. ACS Appl Mater Interfaces. 10, 34254–34264 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. K. Li, X. Wang, X. Wang, M. Liang, V. Nicolosi, Y. Xu, Y. Gogotsi, All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy. 75, (2020)

    Article  CAS  Google Scholar 

  38. C. Zhao, X. Jia, K. Shu, C. Yu, G.G. Wallace, C. Wang, Conducting polymer composites for unconventional solid-state supercapacitors. J Mater Chem A. 8, 4677–4699 (2020)

    Article  CAS  Google Scholar 

  39. Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun, H. Peng, Conjugated polymers for flexible energy harvesting and storage. Adv Mater. 30, 1704261 (2018)

    Article  CAS  Google Scholar 

  40. L. Yan, D. Li, T. Yan, G. Chen, L. Shi, Z. An, D. Zhang, Confining redox electrolytes in functionalized porous carbon with improved energy density for supercapacitors. ACS Appl Mater Interfaces. 10, 42494–42502 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. L. Li, M. Li, J. Liang, X. Yang, M. Luo, L. Ji, Y. Guo, H. Zhang, N. Tang, X. Wang, Preparation of core-shell CQD@PANI nanoparticles and their electrochemical properties. ACS Appl Mater Interfaces. 11, 22621–22627 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. X. Liang, L. Zhao, Q. Wang, Y. Ma, D. Zhang, A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film. Nanoscale. 10, 22329–22334 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. X. Liu, Z. Wu, Y. Yin, Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem Eng J. 323, 330–339 (2017)

    Article  CAS  Google Scholar 

  44. H. Xu, D. Zheng, F. Liu, W. Li, J. Lin, Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J Mater Chem A. 8, 5853–5858 (2020)

    Article  CAS  Google Scholar 

  45. Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, S.H. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci. 56, 173–200 (2020)

    Article  CAS  Google Scholar 

  46. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl Surf Sci. 405, 329–336 (2017)

    Article  CAS  Google Scholar 

  47. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De Gomes, M. Maaza, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram Int. 42, 8385–8394 (2016)

    Article  CAS  Google Scholar 

  48. C.S. Chang, M. Li, H. Wang, S.L. Wang, X. Liu, H.K. Liu, L. Li, A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. J Mater Chem A. 7, 19939–19949 (2019)

    Article  CAS  Google Scholar 

  49. S. Kumar, S. Telpande, V. Manikandan, P. Kumar, A. Misra, Novel electrode geometry for high performance CF/Fe(2)O(3)based planar solid state micro-electrochemical capacitors. Nanoscale. 12, 19438–19449 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. M.S. Javed, H. Lei, J.L. Li, Z.L. Wang, W.J. Mai, Construction of highly dispersed mesoporous bimetallic-sulfide nanoparticles locked in N-doped graphitic carbon nanosheets for high energy density hybrid flexible pseudocapacitors. J Mater Chem A. 7, 17435–17445 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Nature Science Foundation of China (21571084), the Natural Science Foundation of Jiangsu Province (BK20181349), National First-Class Discipline Program of Light Industry Technology and Engineering (LIFE2018-19) and MOE & SAFEA for the 111 Project (B13025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, K., Yang, Z., Chen, J. et al. Oxygen Vacancy-Fe2O3@polyaniline Composites Directly Grown on Carbon Cloth as a High Stable Electrode for Symmetric Supercapacitors. J Inorg Organomet Polym 31, 3894–3903 (2021). https://doi.org/10.1007/s10904-021-02005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02005-1

Keywords

Navigation