Skip to main content
Log in

Enhancing of Al/Sn-HfO2/n-Si (MIS) Schottky barrier diode performance through the incorporation of Sn ions on high dielectric HfO2 thin films formed by spray pyrolysis

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, we have successfully prepared the nano-coral to be intact with the mesoporous of Sn-HfO2 thin films through the (jet nebulizer spray pyrolysis) JNSP technique from different Sn (5, 10, 15 Wt.%) to improve the MIS Schottky diode Al/Sn-HfO2/n-Si. To achieve the phase transformations (monoclinic to orthorhombic) in pure hafnium oxide thin films, we have added the Sn ions as the composite at optimized temperature 600 °C. The XRD characteristic used to determine the structural parameters such as the phase, grain size for pure HfO2, and composite Sn-HfO2 films. The mesoporous with irregularly shaped balls and nano coral-like morphology have been observed through FESEM images. The absorption coefficients and bandgap energy have been determined from the UV Vis spectrum. The EDAX elementary analysis has confirmed the presence of Sn, Hf, O elements in each film. The XPS spectrum has confirmed Sn's presence and binding peak with a spin-orbit on the films' surface. I-V curves of forward and reverse bias determine the barrier height, ideality factor, and saturation currents from the thermionic emission theory. All the Al/Sn@HfO2/n-Si diode parameters are strongly improved after the incorporation of Sn ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Millman, C. Christos. Halkias, Electronic Devices and Circuits McGraw-Hill (1967).

  2. B.G Streetman, S. Streetman, Solid state electronic devices. Prentice-Hall of India (2001).

  3. M.N. Horenstein, Microelectronic Circuits and Devices (Prentice Hall, Upper Saddle River, NJ, 1996).

    Google Scholar 

  4. K. Sasikumar, R. Bharathikannan, M. Raja, Effect of annealing temperature on structural and electrical properties of Al/ZrO2/p-Si MIS schottky diodes. Silicon. 11, 137–143 (2019). https://doi.org/10.1007/s12633-018-9938-5

    Article  CAS  Google Scholar 

  5. R.T. Tung "Electron transport at metal-semiconductor interfaces: General theory."

  6. K. Kukli, J. Ihanus, M. Ritala, M. Leskela, Tailoring the dielectric properties of HfO2-Ta2O5 nanolaminates. Appl. Phys. Lett. 68, 3737–3739 (1996). https://doi.org/10.1063/1.115990

    Article  CAS  Google Scholar 

  7. W. Mönch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenomena. 17(4), 1867–76 (1999)

    Article  Google Scholar 

  8. G. Mohan Kumar, P. Fu Xiao, Sh. Ilanchezhiyan, T.W. Yuldashev, Kang, , Enhanced photoelectrical performance ofchemically processed SnS2 nanoplates. RSC Adv (2016). https://doi.org/10.1039/C6RA20491K

    Article  Google Scholar 

  9. R.K. Nahar, V. Singh, A. Sharma, Study of electrical and microstructure properties of high dielectric hafnium oxide thin film for MOS devices. J. Mater. Sci. Mater. Electron. 18, 615–619 (2007). https://doi.org/10.1007/s10854-006-9111-6

    Article  CAS  Google Scholar 

  10. A. Taube, R. Mroczyński, K. Korwin-Mikke, S. Gierałtowska, J. Szmidt, A. Piotrowska, Effect of the post-deposition annealing on electrical characteristics of MIS structures with HfO 2/SiO 2 gate dielectric stacks. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 177, 1281–1285 (2012). https://doi.org/10.1016/j.mseb.2011.12.010

    Article  CAS  Google Scholar 

  11. H. Kressel, The Effect of Crystal Defects on Optoelectronic Devices, 1981.

  12. P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, C. Mahendarn, Influence of high dielectric HfO2 thin films on the electrical properties of Al/HfO2/n-Si (MIS) structured Schottky barrier diodes. Phys. B Condens. Matter. 594, 412336 (2020). https://doi.org/10.1016/j.physb.2020.412336

    Article  CAS  Google Scholar 

  13. I.K. Er, A.O. Çağırtekin, M. Artuç et al., Synthesis of Al/HfO2/p-Si Schottky diodes and the investigation of their electrical and dielectric properties. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-04937-9

    Article  Google Scholar 

  14. K.X. Luo, A.A. Demkov, D. Triyoso, P. Fejes, R. Gregory, S. Zollner, Combined experimental and theoretical study of thin hafnia films. Phys. Rev. B Condens. Matter Mater. Phys. 78, 1–10 (2008). https://doi.org/10.1103/PhysRevB.78.245314

    Article  CAS  Google Scholar 

  15. D. Cunningham, A First- of Dopants in HfO2 Table of Contents, (2014).

  16. Theoretical Analysis of Oxygen Diffusion in monoclinic HfO 2–7Principles Examination.2, 786 (2004).

  17. C.-K. Lee, E. Cho, H.-S. Lee, C.S. Hwang, S. Han, First-principles study on doping and phase stability of HfO2. Phys. Rev. B. 78, 1–4 (2008). https://doi.org/10.1103/physrevb.78.012102

    Article  Google Scholar 

  18. J. Müller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, L. Frey, Ferroelectricity in yttrium-doped hafnium oxide, J. Appl. Phys. 110.

  19. T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. Van Elshocht, T. Mikolajick, Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories. Eur Solid-State Device Res. Conf (2013). https://doi.org/10.1109/ESSDERC.2013.6818868

    Article  Google Scholar 

  20. Y. Yao, D. Zhou, S. Li, J. Wang, N. Sun, F. Liu, X. Zhao, Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. J. Appl. Phys (2019). https://doi.org/10.1063/1.5117358

    Article  Google Scholar 

  21. P.J. King, N. Sedghi, S. Hall, I.Z. Mitrovic, P.R. Chalker, M. Werner, S. Hindley, Physical and electrical characterization of Ce-HfO2 thin films deposited by thermal atomic layer deposition. J. Vac. Sci. Technol. BNanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 03D103 (2014). https://doi.org/10.1116/1.4826174

    Article  CAS  Google Scholar 

  22. C. Adelmann, H. Tielens, D. Dewulf, A. Hardy, D. Pierreux, J. Swerts, E. Rosseel, X. Shi, M.K. Van Bael, J.A. Kittl, S. Van Elshocht, Atomic Layer Deposition of Gd-Doped HfO2 Thin Films. J. Electrochem. Soc. 157, G105 (2010). https://doi.org/10.1149/1.3301663

    Article  CAS  Google Scholar 

  23. Y.-E. Hong, Y.-S. Kim, K. Do, D. Lee, D.-H. Ko, J.-H. Ku, H. Kim, Thermal stability of Al- and Zr-doped HfO2 thin films grown by direct current magnetron sputtering. J. Vac. Sci Technol. A Vacuum, Surfaces, Film. 23, 1413–1418 (2005). https://doi.org/10.1116/1.201140

    Article  CAS  Google Scholar 

  24. M C. Richter, T. Schenk, M.H. Park, F.A. Tscharntke, E.D. Grimley, J.M. Lebeau, C. Zhou, C.M. Fancher, J.L. Jones, T. Mikolajick, U. Schroeder, Si Doped Hafnium Oxide-A "Fragile" Ferroelectric System 1700131 (2017) 1–12. https://doi.org/https://doi.org/10.1002/aelm.201700131.

  25. M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, T. Mikolajick, Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. doi 10(1063/1), 4927805 (2015)

    Google Scholar 

  26. S.S. Roy, J. Podder, Synthesis and optical characterization of pure and Cu doped SnO 2 thin films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 12, 1479–1484 (2010)

    CAS  Google Scholar 

  27. R. Thomas, K.P.S.S. Hembram, B.V. MohanKumar, G. Mohan Rao, High density oxidative plasma unzipping of multiwall carbon nanotubes. RSC Adv. (2017). https://doi.org/10.1039/C7RA04318J

    Article  Google Scholar 

  28. J.H. Kim, B. Du Ahn, C.H. Lee, K.A. Jeon, H.S. Kang, S.Y. Lee, Characteristics of transparent ZnO based thin-film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes. Thin Solid Films. 516, 1529–1532 (2008). https://doi.org/10.1016/j.tsf.2007.03.101

    Article  CAS  Google Scholar 

  29. V. Balasubramani, J. Chandrasekaran, T.D. Nguyen, S. Maruthamuthu, R. Marnadu, P. Vivek, S. Sugarthi, Colossal photosensitive boost in Schottky diode behavior Ce-V2O5 interfaced layer of MIS structure. Sensors Actuators. A Phys. 315, 112333 (2020). https://doi.org/10.1016/j.sna.2020.112333

    Article  CAS  Google Scholar 

  30. G. Mohan Kumar, P. Ilanchezhiyan, F. Xiao, C. Siva, A. Madhan Kumar, V. Yalishev, S.H.U. Yuldasheva, T.W. Kanga, Blue luminescence and Schottky diode applications of monoclinic HfO2 nanostructures. RSC Adv. 6, (2016). https://doi.org/10.1039/C6RA10644G

  31. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, Incorporation of Ba2+ ions on the properties of MoO3 thin films and fabrication of positive photo-response Cu/Ba–MoO3/p-Si structured diodes. Superlattices Microstruct. 133, 106197 (2019). https://doi.org/10.1016/j.spmi.2019.106197

    Article  CAS  Google Scholar 

  32. M.A. Khaskheli, P. Wu, X. Li, H. Wang, S. Zhang, S. Chen, Y. Pei, Effects of substrate temperature on dielectric and structural properties of Ti and Er co-doped HfO2 thin films. Vacuum. 86, 1920–1923 (2012). https://doi.org/10.1016/j.vacuum.2012.03.028

    Article  CAS  Google Scholar 

  33. M. Mazur, A. Poniedziałek, D. Kaczmarek, D. Wojcieszak, J. Domaradzki, D. Gibson, Investigation of various properties of HfO2-TiO2 thin film composites deposited by multi-magnetron sputtering system. Appl. Surf. Sci. 12–14, (2016). https://doi.org/10.1016/j.apsusc.2016.12.129

  34. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, L.M. Wang, Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol-gel-calcination or sol-gel-hydrothermal route. J. Alloys Compd. 454, 261–267 (2008). https://doi.org/10.1016/j.jallcom.2006.12.014

    Article  CAS  Google Scholar 

  35. J. Liu, Y. Lu, X. Cui, Y. Geng, G. Jin, Z. Zhai, Gas-sensing properties and sensitivity promoting mechanism of Cu-added SnO2 thin films deposited by ultrasonic spray pyrolysis. Sensors Actuators B. Chem (2017). https://doi.org/10.1016/j.snb.2017.01.057

    Article  Google Scholar 

  36. M. Raj, C. Joseph, M. Subramanian, V. Perumalsamy, V. Elayappan, Superior photoresponse MIS Schottky barrier diodes with nanoporous:Sn-WO3 films for ultraviolet photodetector application. New J. Chem. 44, 7708–7718 (2020). https://doi.org/10.1039/d0nj00101e

    Article  CAS  Google Scholar 

  37. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, Zirconia modified nanostructured MoO3 thin films deposited by spray pyrolysis technique for Cu/MoO3-ZrO2/p-Si structured Schottky barrier diode application. Optik. 199, 163351 (2019)

    Article  CAS  Google Scholar 

  38. S. Herodotou, R.E. Treharne, K. Durose, R.J. Tatlock, R.J. Potter, The effects of Zr doping on the optical, electrical and microstructural properties of thin ZnO films deposited by atomic layer deposition. Materials 8(10), 7230–7240 (2015)

    Article  CAS  Google Scholar 

  39. M.B. Zakaria, T. Nagata, T. Chikyow, Mesostructured HfO2/Al2O3 Composite Thin Films with Reduced Leakage Current for Ion-Conducting Devices. ACS Omega. 4, 14680–14687 (2019). https://doi.org/10.1021/acsomega.9b01095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. L. Gao, F. Ren, Z. Cheng, Y. Zhang, Q. Xiang, J. Xu, Porous corundum-type In2O3 nanoflowers: Controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm. 17, 3268–3276 (2015). https://doi.org/10.1039/c5ce00279f

    Article  CAS  Google Scholar 

  41. A. Annamalai, P.S. Shinde, T.H. Jeon, H.H. Lee, H.G. Kim, W. Choi, J.S. Jang, Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting. Sol. Energy Mater. Sol. Cells. 144, 247–255 (2016). https://doi.org/10.1016/j.solmat.2015.09.016

    Article  CAS  Google Scholar 

  42. K.D. Malviya, H. Dotan, D. Shlenkevich, A. Tsyganok, H. Mor, A. Rothschild, Systematic comparison of different dopants in thin film hematite (α-Fe2O3) photoanodes for solar water splitting. J. Mater. Chem. A. 4, 3091–3099 (2016). https://doi.org/10.1039/c5ta07095c

    Article  CAS  Google Scholar 

  43. P.S. Bagus, F. Illas, G. Pacchioni, F. Parmigiani, Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. J. Electron Spectros. Relat. Phenomena. 100, 215–236 (1999). https://doi.org/10.1016/s0368-2048(99)00048-1

    Article  CAS  Google Scholar 

  44. S.S. Lin, C.S. Liao, Structure and physical properties of W-doped HfO2 thin films deposited by simultaneous RF and DC magnetron sputtering. Surf. Coatings Technol. 232, 46–52 (2013). https://doi.org/10.1016/j.surfcoat.2013.04.051

    Article  CAS  Google Scholar 

  45. D. Barreca, A. Milanov, R.A. Fischer, A. Devi, E. Tondello, Hafnium oxide thin film grown by ALD: An XPS study. Surf. Sci. Spectra. 14, 34–40 (2007). https://doi.org/10.1116/11.20080401

    Article  CAS  Google Scholar 

  46. T.V. Perevalov, V.A. Gritsenko, S.B. Erenburg, A.M. Badalyan, H. Wong, C.W. Kim, Atomic and electronic structure of amorphous and crystalline hafnium oxide: X-ray photoelectron spectroscopy and density functional calculations. J. Appl. Phys (2007). https://doi.org/10.1063/1.2464184

    Article  Google Scholar 

  47. X. Luo, Y. Li, H. Yang, Y. Liang, K. He, W. Sun, H.H. Lin, S. Yao, X. Lu, L. Wan, Z. Feng, Investigation of HfO2 thin films on Si by X-ray photoelectron spectroscopy, rutherford backscattering, grazing incidence X-ray diffraction and Variable Angle SpectroscopicEllipsometry. Crystals. 8, 1–16 (2018). https://doi.org/10.3390/cryst8060248

    Article  CAS  Google Scholar 

  48. S. Ghosh, B.N. Shivakiran Bhaktha, Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides. Nanotechnology. 27, 105202 (2016). https://doi.org/10.1088/0957-4484/27/10/105202

    Article  CAS  PubMed  Google Scholar 

  49. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber, XPS study of the surface chemistry of L-CVD SnO 2 thin films after oxidation. Thin Solid Films. 490, 36–42 (2005). https://doi.org/10.1016/j.tsf.2005.04.014

    Article  CAS  Google Scholar 

  50. M. Nand, P. Rajput, R.J. Choudhary, S.N. Jha, Effect of Y2O3 doping on HfO2 thin film prepared by pulsed laser deposition (PLD): XPS studies. AIP Conf. Proc. 2115, 3–7 (2019). https://doi.org/10.1063/1.5113169

    Article  CAS  Google Scholar 

  51. T.F. Weng, M.S. Ho, C. Sivakumar, B. Balraj, P.F. Chung, VLS growth of pure and Au decorated β-Ga2O3 nanowires for room temperature CO gas sensor and resistive memory applications. Appl. Surf. Sci. 533, 147476 (2020). https://doi.org/10.1016/j.apsusc.2020.147476

    Article  CAS  Google Scholar 

  52. S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşi, I. Uslu, Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Results Phys. 6, 180–185 (2016). https://doi.org/10.1016/j.rinp.2016.03.003

    Article  Google Scholar 

  53. G. Mohan Kumar, A. Madhan Kumar, P. Ilanchezhiyan, T.W. Kang, Solution processed n-In2O3 nanostructures for organic-inorganic hybrid p–n junctions. Nanoscale. (2015). https://doi.org/10.1039/C4NR03537B

    Article  Google Scholar 

  54. Y. Reddy, T. Narasappa, R. Suvarna, V. Reddy, Analysis of electrical properties and carrier transport mechanisms of Ru/Ti/n-InP schottky diodes at room temperature. Analysis. 2, 219–228 (2015)

    Google Scholar 

  55. Ş Altindal, A. Tataroǧlu, I. Dökme, Density of interface states, excess capacitance and series resistance in the metal-insulator-semiconductor (MIS) solar cells. Sol. Energy Mater. Sol. Cells. 85, 345–358 (2005). https://doi.org/10.1016/j.solmat.2004.05.004

    Article  CAS  Google Scholar 

  56. Ş Altindal, I. Dökme, M.M. Bülbül, N. Yalçin, T. Serin, The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range. Microelectron. Eng. 83, 499–505 (2006). https://doi.org/10.1016/j.mee.2005.11.014

    Article  CAS  Google Scholar 

  57. I. Tascioglu, U. Aydemir, Ş Altndal, B. Kínací, S. Özçelik, Analysis of the forward and reverse bias I-V characteristics on Au/PVA:Zn/n-Si Schottky barrier diodes in the wide temperature range. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3552599

    Article  Google Scholar 

  58. S. Alialy, A. Kaya, E. Maril, I. Uslu, Electronic transport of Au/(Ca1.9Pr0.1Co4Ox)/n-Si structures analysed over a wide temperature range. Philos. Mag. 95, 1448–1461 (2015). https://doi.org/10.1080/14786435.2015.1033029

    Article  CAS  Google Scholar 

  59. S. Demirezen, Ş Altindal, On the temperature dependent profile of interface states and series resistance characteristics in (Ni/Au)/Al022Ga 078 N/AlN/GaN heterostructures. Phys. B Condens. Matter. 405, 1130–1138 (2010). https://doi.org/10.1016/j.physb.2009.11.015

    Article  CAS  Google Scholar 

  60. A. Turut, A. Karabulut, K. Ejderha, N. B, Materials Science in Semiconductor Processing Capacitance – conductance – current – voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n–GaAs MIS structures. Mater. Sci. Semicond. Process 39, 400–407 (2015). https://doi.org/10.1016/j.mssp.2015.05.025

    Article  CAS  Google Scholar 

  61. V. Balasubramani, J. Chandrasekaran, V. Manikandan, R. Marnadu, P. Vivek, P. Balraju, Influence of rare earth doping concentrations on the properties of spin-coated V2O5 thin films and Cu/Nd-V2O5/n-Si Schottky barrier diodes. Inorg Chem. Commun. (2020). https://doi.org/10.1016/j.inoche.2020.108072

    Article  Google Scholar 

  62. V. Balasubramani, J. Chandrasekaran, R. Marnadu, P. Vivek, S. Maruthamuthu, S. Rajesh, Impact of annealing temperature on spin coated V2O5 thin films as interfacial layer in Cu/V2O5/n-Si structured schottky barrier diodes. J Inorg Organomet Polym (2019). https://doi.org/10.1007/s10904-019-01117-z

    Article  Google Scholar 

  63. P. Ilanchezhiyan, C. Siva, A. Madhan Kumar, G. Fu Xiao, T.W. Mohan Kumar, Kanga, Optoelectronic characteristics of chemically processed ultra-thin InyZn1−yO nanostructures. CrystEngComm. (2016). https://doi.org/10.1039/C6CE00558F

    Article  Google Scholar 

  64. Ç. Bilkan, Y. Azizian-Kalandaragh, Ş Altındal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys. B Condens. Matter. 500, 154–160 (2016). https://doi.org/10.1016/j.physb.2016.08.001

    Article  CAS  Google Scholar 

  65. H.G. Çetinkaya, Altındal, I. Orak, I. Uslu, Electrical characteristics of Au/n-Si (M.S.) Schottky Diodes (S.D.s) with and without different rates (graphene + Ca1.9Pr0.1Co4Ox-doped poly(vinyl alcohol)) interfacial layer. J. Mater. Sci. Mater. Electron. 28, 7905–7911 (2017). https://doi.org/10.1007/s10854-017-6490-9

    Article  CAS  Google Scholar 

  66. S.O. Tan, I. Taşcıoğlu, S. Altındal Yerişkin, H. Tecimer, F. Yakuphanoğlu, Illumination dependent electrical data identification of the cdzno interlayered metal-semiconductor structures. Silicon. 12, 2885–2891 (2020). https://doi.org/10.1007/s12633-020-00382-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like express their sincer gratitude to Mr Goutam P Facility Technologist -process intergration, NNFC, CeNSE, Indian Institute of Science (IISc.), Bengaluru for his valuable technical supports. Also, the authors would like to express their gratitude to Advance Research Instrumentation Centre (ARIC), Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore for providing instrument facilities. The authors gratefully acknowledge the financial support from the Department of Science and Technology-Science and Engineering Research Board, Government of India, for the major research project (EMR/2016/007874). Author M. Shkir would like to express his gratitude to King Khalid University, Saudi Arabia for providing administrative and technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chandrasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harishsenthil, P., Chandrasekaran, J., Marnadu, R. et al. Enhancing of Al/Sn-HfO2/n-Si (MIS) Schottky barrier diode performance through the incorporation of Sn ions on high dielectric HfO2 thin films formed by spray pyrolysis. J Inorg Organomet Polym 31, 3686–3699 (2021). https://doi.org/10.1007/s10904-021-01997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01997-0

Keywords

Navigation