Skip to main content
Log in

Facile Modification of Biochar Derived from Agricultural Straw Waste with Effective Adsorption and Removal of Phosphorus from Domestic Sewage

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In recent decades, straw waste is the major byproduct around agriculture that has become one of the factors of environmental pollution. The purpose of this study is to reuse waste straw to develop a new green and highly efficient biomass-based adsorbent for phosphorus removal. To attain this aim, Mg–Al bimetallic oxide/straw fiber (Mg–Al/SF) with hierarchical structure was successfully synthesized by hydrothermal method using waste straw as the biomass carbon precursor and Mg–Al/SF was applied as adsorbent in the removal of phosphorus from wastewater. The morphology, composition and structure of the adsorbent was well supported by several characterizations. The prepared biomass-based adsorbent showed outstanding adsorption performance. Maximum adsorption capability of Mg–Al/SF towards phosphorus from the Langmuir isotherm model was fitted out to be 89.37 mg/g. The related kinetics and isotherm study for the adsorption process were explored in detail. The proposed adsorbent exhibited good reusability that the removal of phosphorus remained above 72% after 5 cycles. In addition, thermodynamic study was carried out to further investigate the phosphorus removal mechanism, which was the synergistic combination of surface adsorption and chemical adsorption. The removal of total phosphorus in actual domestic sewage (Total phosphorus, TP, 0.8–1.1 mg/L) were investigated. The results indicated that the prepared Mg–Al/SF has excellent TP adsorption and recycling performance, and the adsorption and stability performance are significantly higher than that of the commercial activated carbon. The interactions between biomass material with large surface area and metal oxide provides great potential for the real application in the water treatment. Furthermore, it also presents a feasible and efficient practical example of increasing the use of agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Li, F. He, X. Shen, D. Hu, Q. Huang, Bioresour. Technol. 315, (2020)

    Article  CAS  Google Scholar 

  2. T. Zhang, D. Yuan, Q. Guo, F. Qiu, D. Yang, Z. Ou, Food Bioprod. Process. 114, 154–162 (2019)

    Article  CAS  Google Scholar 

  3. J. Yuan, Y. Zhu, J. Wang, L. Gan, M. He, T. Zhang, P. Li, F. Qiu, Food Bioprod. Process. 126, 293–304 (2021)

    Article  CAS  Google Scholar 

  4. J. Wang, W. Qian, Y. He, Y. Xiong, P. Song, R. Wang, Waste Manage. 65, 11–21 (2017)

    Article  CAS  Google Scholar 

  5. L. Zhang, X. Peng, L. Zhong, W. Chua, Z. Xiang, R. Sun, Cur. Med. Chem. 26, 2456 (2019)

    Article  CAS  Google Scholar 

  6. S. Wan, S. Wang, Y. Li, B. Gao, J. Ind. Eng. Chem. 47, 246–253 (2017)

    Article  CAS  Google Scholar 

  7. Z. Chen, T. Huang, Y. Feng, W. Hu, F. Mao, C. Zhang, Y. Liu, Z. Fu, B. Chem, Soc. Jpn. 92, 1824–1833 (2019)

    CAS  Google Scholar 

  8. S. Foong, R. Liew, Y. Yang, Y. Cheng, P. Yek, W. Maharib, X. Lee, C. Han, D. Vo, Q. Le, M. Aghbashlo, M. Tabatabaei, C. Sonne, W. Peng, S. La, Chem. Eng. J. 389, (2020)

    Article  CAS  Google Scholar 

  9. B. Sharma, B. Vaish, U. Singh, P. Singh, R. Singh, Int. J. Environ. Res. 13, 409–429 (2019)

    Article  CAS  Google Scholar 

  10. G. Oscar, M. Claudio, S. Bruna, I. Silvana, K. Guilherme, M. Andrés, C. Pio, O. Marcelo, G. Alice, L. Neftali, Cellulose 27, 113–126 (2020)

    Article  Google Scholar 

  11. H. Liu, P. Li, T. Zhang, Y. Zhu, F. Qiu, Food Bioprod. Process. 119, 257–267 (2020)

    Article  CAS  Google Scholar 

  12. Z. Jing, J. Ding, T. Zhang, D. Yang, F. Qiu, Q. Chen, J. Xu, Food Bioprod. Process. 115, 134–142 (2019)

    Article  CAS  Google Scholar 

  13. H. Liu, P. Li, F. Qiu, T. Zhang, J. Xu, Food Bioprod. Process. 123, 177–187 (2020)

    Article  CAS  Google Scholar 

  14. G. Morse, S. Brett, J. Guy, J. Lester, Sci. Total Envir. 212, 69–81 (1998)

    Article  CAS  Google Scholar 

  15. S. Aslan, I. Kapdan, Ecol. Eng. 28, 64–70 (2006)

    Article  Google Scholar 

  16. Z. Qin, A. Shober, K. Scheckel, C. Penn, K. Turner, J. Environ. Qual. 47, 1232–1241 (2018)

    Article  CAS  Google Scholar 

  17. H. Zou, Y. Wang, Bioresource Technol. 211, 87–92 (2016)

    Article  Google Scholar 

  18. I. Ashraf, C. Li, T. Wang, R. Li, B. Chen, Anal. Method. 12, 466–470 (2020)

    Article  CAS  Google Scholar 

  19. R. Xue, J. Xu, L. Gu, L. Pan, Q. He, Water Air Soil Poll. 229, 161 (2018)

    Article  Google Scholar 

  20. J. Torit, D. Phihusut, Environ. Sci. Pollut. Res. 26, 34101–34109 (2019)

    Article  CAS  Google Scholar 

  21. L. Qiu, M. Zhang, X. Yu, P. Zheng, Environ. Sci. Pollut. Res. 25, 1543–1550 (2018)

    Article  CAS  Google Scholar 

  22. S. Li, F. Jiang, M. Liu, Y. Wang, S. Wang, X. Yang, J. Colloid Interface Sci. 560, 321–329 (2019)

    Article  Google Scholar 

  23. L. Rugnini, G. Costa, R. Congestri, S. Antonaroli, L. Sanita di Toppi, L. Bruno, Plant Physiol. Biochem. 125, 45–51 (2018)

    Article  CAS  Google Scholar 

  24. G. Wu, W. Xing, J. Han, P. Li, Fresen. Environ. Bull. 29, 445–453 (2020)

    CAS  Google Scholar 

  25. Y. Zhu, J. Rong, T. Zhang, J. Xu, Y. Dai, F. Qiu, Appl. Nanosci. 8, 1139–1148 (2018)

    Article  CAS  Google Scholar 

  26. Y. Zhu, F. Qiu, J. Rong, T. Zhang, K. Mao, D. Yang, Colloid. Surface B 191, (2020)

    Article  CAS  Google Scholar 

  27. Y. Zhu, J. Rong, K. Mao, D. Yang, T. Zhang, F. Qiu, J. Pan, Appl. Organomet. Chem. 34, (2020)

    CAS  Google Scholar 

  28. H. Yu, T. Zhang, Z. Jing, J. Xu, F. Qiu, D. Yang, L. Yu, Chem. Eng. Sci. 205, 278–286 (2019)

    Article  CAS  Google Scholar 

  29. Y. Wang, J. Xu, X. Xu, D. Yang, X. Zheng, J. Pan, T. Zhang, F. Qiu, C. Li, Appl. Organomet. Chem. 32, (2018)

    Article  Google Scholar 

  30. F. Hu, M. Wang, X. Peng, F. Qiu, T. Zhang, H. Dai, Z. Liu, Z. Cao, Colloid Surface A. 555, 314–323 (2018)

    Article  CAS  Google Scholar 

  31. X. Liu, S. Yang, S. Liu, Y. Yang, Process Saf. Environ. 148, 858–866 (2021)

    Article  CAS  Google Scholar 

  32. Y. Wang, J. Xu, D. Yang, T. Zhang, F. Qiu, J. Pan, Appl. Organomet. Chem. 32, (2018)

    Article  Google Scholar 

  33. I. Blancoa, P. Molleb, L. Mierac, G. Ansola, Water Res. 89, 355–365 (2016)

    Article  Google Scholar 

  34. K. Krishna, A. Aryal, T. Jansen, J. Environ. Manage. 180, 17–23 (2016)

    Article  Google Scholar 

  35. H. Hatami, A. Fotovat, A. Halajnia, Appl. Clay Sci. 152, 333–341 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (21878132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingping Li or Fengxian Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Zhu, Y., Wang, J. et al. Facile Modification of Biochar Derived from Agricultural Straw Waste with Effective Adsorption and Removal of Phosphorus from Domestic Sewage. J Inorg Organomet Polym 31, 3867–3879 (2021). https://doi.org/10.1007/s10904-021-01992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01992-5

Keywords

Navigation