Skip to main content
Log in

Green Synthesis, Structural Characterization and Photocatalytic Activities of Chitosan-ZnO Nano‐composite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Chitosan was isolated from chitin, a direct derivative of snail shell, and further used to form a heterostructure with ZnO nanoparticles (ZnO NPs). This study was carried out to utilize green nanochemistry in the purification of waste water. The obtained ZnO-chitosan nanocomposite was made by precipitation method and characterized by Fourier Transform Infrared (FTIR), powder X-ray diffraction (pXRD), Energy dispersive X-ray (EDX), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses. The FTIR spectra among other peaks revealed bands around 1735–1740 cm−1 in all the spectra due to C=O stretching band. The XRD patterns showed the crystalline nature of ZnO and the ZnO-chitosan nanocomposites with low intensities in the peaks of the nanocomposites, an indication of reduced crystallinity. The SEM micrographs showed thin strands of the chitin and chitosan whereas the ZnO NPs appeared as clustered spheroids with the ZnO-chitosan nanocomposites revealing the anchoring of the ZnO spheroids on the smooth strands of the chitosan. The EDX spectra showed various elemental compositions with 54.82% Zn in the ZnO NPs and 17.27% Zn in the ZnO-chitosan nanocomposites. TEM studies showed spherical images of the ZnO NPs (3.69 nm) and the quasi-spherical nature of the ZnO-chitosan nanocomposites (8.91 nm). The photodegradation of methylene blue dye by ZnONPs recorded gradual decomposition of the dye while in the composite, a tremendous change was observed within the first 15 min of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.K. Mahadeva, J. Kim, Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics. Sci. Technol. Adv. Mater. 12, 055006 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. S.H. Oh, G.B. Hoflund, Chemical state study of palladium powder and ceria-supported palladium during low-temperature CO oxidation. J. Phys. Chem. A 110, 7609–7613 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. K. Zorn, S. Giorgio, E. Halwax, C.R. Henry, H. Gr¨onbeck, G. Rupprechter, CO oxidation on technological Pd–Al2O3 catalysts: oxidation state and activity. J. Phys. Chem. C 115, 1103–1111 (2011)

    Article  CAS  Google Scholar 

  4. J. Guzman, S. Carrettin, J.C. Fierro-Gonzalez, Y.L. Hao, B.C. Gates, A. Corma, CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species . Angew. Chem. Int. Ed. 44, 4778–4781 (2005)

    Article  CAS  Google Scholar 

  5. Y. Wang, S. Van de Vyver, K.K. Sharma, Y.R. Leshkov, Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem. 16, 719–726 (2014)

    Article  CAS  Google Scholar 

  6. C. Ray, T. Pal, Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 5, 9465–9487 (2017)

    Article  CAS  Google Scholar 

  7. S. Alamdari, M.S. Ghamsari, C. Lee, W. Han, H.-H. Park, M.J. Tafreshi, H. Afarideh, M.H.M. Ara, Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci. 10, 3620 (2020)

    Article  CAS  Google Scholar 

  8. E.A. Dil, A. Asfaram, A. Goudarzi, E. Zabihi, H. Javadian, Biocompatible chitosan-zinc oxide nanocomposite based dispersive micro-solid phase extraction coupled with HPLC-UV for the determination of rosmarinic acid in the extracts of medical plants and water sample. Int. J Biol. Macromol. 154, 528–537 (2020)

    Article  CAS  Google Scholar 

  9. R. Vinayagam, S. Pai, T. Varadavenkatesan, M.K. Narasimhan, S. Narayanasamy, R. Selvaraj, Structural characterization of green synthesized α-Fe2O3 nanoparticles using the leaf extract of Spondias dulcis. Surf. Interface 20, 100618 (2020)

    Article  CAS  Google Scholar 

  10. R. Vinayagam, C. Zhou, S. Pai, T. Varadavenkatesan, M.K. Narasimhan, S. Narayanasamy, R. Selvaraj, Structural characterization of green synthesized magnetic mesoporous Fe3O4NPs@ME. Mater. Chem. Phys. 262, 124323 (2021)

    Article  CAS  Google Scholar 

  11. V. Vinotha, A. Iswarya, R. Thaya, M. Govindarajan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, M.N. Al-Anbr, B. Vaseeharan, Synthesis of ZnO nanoparticles using insulin-rich leaf extract: anti-diabetic, antibiofilm and anti-oxidant properties. J. Photochem. Photobiol. B 197, 111541 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. D. Suresh, P.C. Nethravathi, H. Udayabhanu, Rajanaika, H. Nagabhushana, S.C. Sharma, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 31, 446–454 (2015)

    Article  CAS  Google Scholar 

  13. T.R. Lakshmeesha, M. Murali, M.A. Ansari, A.C. Udayashankar, M.A. Alzohairy, A. Almatroudi, M.N. Alomary, S.M.M. Asiri, B.S. Ashwini, N.K. Kalagatur, C.S. Nayak, S.R. Niranjana, Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi. J. Biol. Sci. .27, 1923–1930 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. M. Naseer, U. Aslam, B. Khalid, B. Chen. Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 10, 9055 (2020)

  15. R. Justin, B. Chen, Multifunctional chitosan–magnetic graphene quantum dot nanocomposites for the release of therapeutics from detachable and non-detachable biodegradable microneedle arrays. Interface Focus: 20170055 (2018)

  16. N. Morin-Crini, E. Lichtfouse, G. Torri, G. Crini, Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem. Letts 17(4), 1667–1692 (2019)

    Article  CAS  Google Scholar 

  17. S. Yadav, G.K. Mehrotra, P.K. Dutta, Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry. 334, 127605 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. O.F. Zahiri, K. Tahvildari, M. Nozari, Novel Antibacterial Food Packaging Based on Chitosan Loaded ZnO Nano Particles Prepared by Green Synthesis from Nettle Leaf Extract. J Inorg Organomet Polym 31, 43–54 (2021)

    Article  CAS  Google Scholar 

  19. N. Hsan, P.K. Dutta, S. Kumar, R. Bera, N. Das, Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int. J. Biol. Macromolecules. 125, 300–306 (2019)

    Article  CAS  Google Scholar 

  20. Z.W. Zeng, J.J. Wang, R.Z. Xiao, T. Xie, G.L. Zhou, X.R. Zhan, S.L. Wang, Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 6, 765–774 (2011)

    Article  CAS  Google Scholar 

  21. Y. Abdallah, M. Liu, S.O. Ogunyemi, T. Ahmed, H. Fouad, A. Abdelazez, C. Yan, Y. Yang, J. Chen, B. Li, Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae pv. oryzae. Molecules 25, 4795 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  22. M. Anand, P. Sathyapriya, M. Maruthupandy, A.H. Beevi, Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Front. Lab. Med. 2, 72–78 (2018)

    Article  Google Scholar 

  23. T. Liu, J. Wang, F. Chi, Z. Tan, L. Liu, Development and characterization of novel active chitosan films containing fennel and peppermint essential oils. Coatings 10, 936 (2020)

    Article  CAS  Google Scholar 

  24. P.V. Krivoshapkin, A.I. Ivanets, M.A. Torlopov, V.I. Mikhaylov, V. Srivastava, M. Sillanpää, V.G. Prozorovich, T.F. Kouznetsova, E.D. Koshevaya, E.F. Krivoshapkina, Nanochitin/manganese oxide-biodegradable hybrid sorbent for heavy metal ions. Carbohydr. Polym. 210, 135–143 (2019)

  25. M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144, 51–63 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. T. Szabo, J. Nemeth, I. Dekany, Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Coll. Surf. A 230, 23–35 (2003)

    Article  CAS  Google Scholar 

  27. K.S. Siddiqi, A.U. Rahman, A. Husen, Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 13, 141 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. J.O. Adeyemi, E.E. Elemike, D.C. Onwudiwe, ZnO nanoparticles mediated by aqueous extracts of Dovyalis caffra fruits and the photocatalytic evaluations. Mater. Res. Express 6, 125091 (2019)

    Article  CAS  Google Scholar 

  29. A.A.A. Kayode, O.T. Kayode, Some medicinal values of Telfairia occidentalis: a review. Am. J. Biochem. Mol. Biol. 1, 30–38 (2011)

    Article  Google Scholar 

  30. S. Yadav, G.K. Mehrotra, P. Bhartiya, A. Singh, P.K. Dutta, Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr. Polym. 227, 115348 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. J.C. Roy, F. Salaün, S. Giraud, A. Ferri, G. Chen, J. Guan (2017) Solubility of chitin: solvents, solution behaviors and their related mechanisms Intech Open. https://doi.org/10.5772/intechopen  

  32. M.J. Haque, M.M. Bellah, M.R. Hassan, S. Rahman, Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express 1, 010007 (2020)

    Article  Google Scholar 

  33. M.M. AbdElhady, Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int. J. Carbohydr. Chem. 840591, 6 (2012)

    Google Scholar 

  34. D. Bharathi, R. Ranjithkumar, S. Vasantharaj, B. Chandarshekar, V. Bhuvaneshwari, Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. Int. J. Biol. Macromol. 132, 880–887 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. S.K. Chaudhuri, L. Malodia, Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci. 7, 501–512 (2017)

    Article  CAS  Google Scholar 

  36. M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 26, 1294–1299 (2015)

    Article  CAS  Google Scholar 

  37. E.E. Elemike, D.C. Onwudiwe, L. Wei, L. Chaogang, Z. Zhiwei, Synthesis of nanostructured ZnO, AgZnO and the composites with reduced graphene oxide (rGO-AgZnO) using leaf extract of Stigmaphyllon ovatum. J. Environ. Chem. Eng. 7, 103190 (2019)

    Article  CAS  Google Scholar 

  38. R. Vinayagam, R. Selvaraj, P. Arivalagan, T. Varadavenkatesan, Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J. Photochem. Photobiol. B 203, 111760 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. L. Li-Hua, D. Jian-Cheng, D. Hui-Ren, L. Zi-Ling, X. Ling, Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr. Res. 345, 994–998 (2010)

    Article  CAS  Google Scholar 

  40. M.R. Saboktakin, R.M. Tabatabaee, A. Maharramov, M.A. Ramazanov, Design and characterization of chitosan nanoparticles as delivery systems for paclitaxel. Carbohydr. Polym. 82, 466–471 (2010)

    Article  CAS  Google Scholar 

  41. X. Zhao, H. Li, A. Ding, G. Zhou, Y. Sun, D. Zhang, Preparing and characterizing Fe3O4@cellulose nanocomposites for effective isolation of cellulose-decomposing microorganisms. Mater. Lett. 163, 154–157 (2016)

    Article  CAS  Google Scholar 

  42. S. Mun, H.-U. Ko, L. Zhai, S.-K. Min, H.-C. Kim, Kim, Enhanced electromechanical behavior of cellulose film by zinc oxide nanocoating and its vibration energy harvesting. Acta Mater. 114, 1–6 (2016)

    Article  CAS  Google Scholar 

  43. H. Oh, Y.J. Hong, K.-S. Kim, S. Yoon, H. Baek, S.-H. Kang, Y.-K. Kwon, M. Kim, Architectured van der Waals epitaxy of ZnO nanostructures on hexagonal. BN Asia Mater. 6, 145 (2014)

    Article  CAS  Google Scholar 

  44. K.A. Isai, V.S. Shrivastava, Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl. Sci. 1, 1247 (2019)

    Article  CAS  Google Scholar 

  45. D. Blažeka, J. Car, N. Klobucar, A. Jurov, E. Kovacevic, N. Krstulovic , J. Zavašnik, A. Jagodar, Photodegradation of methylene blue and rhodamine B using laser-synthesized ZnO. Nanopart. Mater. 13, 4357 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors wish to appreciate Thermosteel Laboratories limited and the management of Federal University of Petroleum resources Effurun Nigeria for the platform that enabled this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias E. Elemike.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elemike, E.E., Onwudiwe, D.C. & Mbonu, J.I. Green Synthesis, Structural Characterization and Photocatalytic Activities of Chitosan-ZnO Nano‐composite. J Inorg Organomet Polym 31, 3356–3367 (2021). https://doi.org/10.1007/s10904-021-01988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01988-1

Keywords

Navigation