Skip to main content
Log in

Effects of Various Transition Metals on the Thermal Oxidative Stabilization of Polyacrylonitrile Nanofibers

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, the polyacrylonitrile (PAN) nanofibers and PAN nanofibers bonded with different transition metal (Fe, Co, Ni, and Cu) acetates were successfully prepared and their thermal oxidative stabilization process were analysed by Fourier-transform infrared spectra (FT-IR) and differential scanning calorimetry (DSC). The structural evolution of process was characterized by examining the FTIR spectral peaks generated at four different thermal oxidative stabilization temperatures. Based on the thermal oxidative stabilization rates obtained from each transition metal, Co-PAN and Cu-PAN are the only effective precursors for the thermal oxidative stabilization process and, according to differential scanning calorimetry, Co-PAN is the most effective and suitable precursor for the PAN with different transition metals. Although Co-PAN increased the exothermic reaction (ΔH) by approximately 140%, it alleviates the heat release rate (ΔH/ΔT) by approximately 44%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

Not applicable.

References

  1. H. Morgan, Carbon Fibers and Their Composites (CRC Press, Boca Raton, 2005).

    Book  Google Scholar 

  2. J.B. Donnet, T.K. Wang, J.C. Peng, S. Rebouillat, Carbon Fibers, 3rd edn. (Marcel Dekker, New York, 1998).

    Book  Google Scholar 

  3. E. Fitzer, Carbon Fibers and Their Composites (Spinger, New York, 1985).

    Book  Google Scholar 

  4. D.D. Edie, Carbon 36, 345–362 (1998)

    Article  Google Scholar 

  5. E. Fitzer, Carbon 27, 621–645 (1989)

    Article  Google Scholar 

  6. E. Frank, F. Hermanutz, M.R. Buchmeiser, Macromol. Mater. Eng. 297, 493–501 (2012)

    Article  CAS  Google Scholar 

  7. O.-K. Park, S. Lee, H.-I. Joh, J.K. Kim, P.-H. Kang, J.H. Lee, B.-C. Ku, Polymer 53, 2168–2174 (2012)

    Article  CAS  Google Scholar 

  8. S. Chand, J. Mater. Sci. 35, 1303–1313 (2000)

    Article  CAS  Google Scholar 

  9. R.V. Ghorpade, D.W. Cho, S.C. Hong, Carbon 121, 502–511 (2017)

    Article  CAS  Google Scholar 

  10. N.U. Nguyen-Thai, S.C. Hong, Macromolecules 46, 5882–5889 (2013)

    Article  CAS  Google Scholar 

  11. Z. Fu, Y. Gui, S. Liu, Z. Wang, B. Liu, C. Cao, H. Zhang, J. Appl. Polym. Sci. 131, 40834 (2014)

    Google Scholar 

  12. Y. Xue, J. Liu, J. Liang, Polym. Degrad. Stab. 98, 219–229 (2013)

    Article  CAS  Google Scholar 

  13. S.-P. Rwei, T.-F. Way, Y.-S. Hsu, Polym. Degrad. Stab. 98, 2072–2080 (2013)

    Article  CAS  Google Scholar 

  14. E.V. Loginova, I.V. Mikheev, D.S. Volkov, M.A. Proskurnin, Anal. Methods 8, 371–380 (2016)

    Article  CAS  Google Scholar 

  15. J. Hao, Y. Liu, C. Lu, Polym. Degrad. Stab. 147, 89–96 (2018)

    Article  CAS  Google Scholar 

  16. D.U. Park, N.K. Han, J.H. Ryu, W.H. Park, Y.G. Jeong, Fibers Polym. 19, 2007–2015 (2018)

    Article  CAS  Google Scholar 

  17. J.D. Moskowitz, W. Jacobs, A. Tucker, M. Astrove, B. Harmon, Polym. Degrad. Stab. 178, 109198 (2020)

    Article  CAS  Google Scholar 

  18. H. Liu, S. Zhang, J. Yang, M. Ji, J. Yu, M. Wang, X. Chai, B. Yang, C. Zhu, J. Xu, Polymers 11, 1150 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  19. G. Ayrey, S.K. Chadda, R.C. Poller, J. Polym. Sci. Polym. Chem. Ed. 20, 2249–2258 (1982)

    Article  CAS  Google Scholar 

  20. X. Qin, Y. Lu, H. Xiao, Y. Song, Mater. Lett. 76, 162–164 (2012)

    Article  CAS  Google Scholar 

  21. X. Li, A. Qin, X. Zhao, D. Liu, H. Wang, C. He, Phys. Chem. Chem. Phys. 17, 21856–21865 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. H.G. Chae, M.L. Minus, A. Rasheed, S. Kumar, Polymer 48, 3781–3789 (2007)

    Article  CAS  Google Scholar 

  23. M. Mohammadi, A. Rezaei, A. Khazaei, S. Xuwei, Z. Huajun, ACS Appl. Mater. Interfaces 11, 33194–33206 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. P. Hayati, S. Suárez-García, A. Gutierrez, E. Şahin, D.R. Molina, A. Morsali, A.R. Rezvani, Ultrason. Sonochem. 42, 310–319 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. A. Ansari, S. Vahedi, O. Tavakoli, M. Khoobi, M.A. Faramarzi, Appl. Organomet. Chem. 33, e4634 (2019)

    Article  CAS  Google Scholar 

  26. T. Mortezazadeh, E. Gholibegloo, N. Riyahi Alam, S. Haghgoo, A. Musa, M. Khoobi, J. Biomed. Phys. Eng. 10, 25–38 (2020)

    Article  Google Scholar 

  27. S. Okazoe, Y. Yasaka, M. Kudo, H. Maeno, Y. Murakami, Y. Kimura, Chem. Commun. 54, 7834–7837 (2018)

    Article  CAS  Google Scholar 

  28. Q. Bai, F.C. Shen, S.L. Li, J. Liu, L.Z. Dong, Z.M. Wang, Y.Q. Lan, Small Methods 2, 1800049 (2018)

    Article  CAS  Google Scholar 

  29. L. Xu, L. Zhang, B. Cheng, J. Yu, Carbon 152, 652–660 (2019)

    Article  CAS  Google Scholar 

  30. B. Zhang, Z.-L. Xu, Y.-B. He, S. Abouali, M.A. Garakani, E.K. Heidari, F. Kang, J.-K. Kim, Nano Energy 4, 88–96 (2014)

    Article  CAS  Google Scholar 

  31. B. Bajaj, H.-I. Joh, S.M. Jo, J.H. Park, K.B. Yi, S. Lee, Appl. Surf. Sci. 429, 253–257 (2018)

    Article  CAS  Google Scholar 

  32. H. Tang, W. Chen, J. Wang, T. Dugger, L. Cruz, D. Kisailus, Small 14, 1703459 (2018)

    Article  CAS  Google Scholar 

  33. M.A.A.M. Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Mater. Des. 186, 108199 (2020)

    Article  CAS  Google Scholar 

  34. Y. Chen, C. Zou, M. Mastalerz, S. Hu, C. Gasaway, X. Tao, Int. J. Mol. Sci. 16, 30223–30250 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. Koutsianitis, C. Mitani, K. Giagli, D. Tsalagkas, K. Halasz, O. Kolonics, C. Gallis, L. Csoka, Ultrason. Sonochem. 23, 148–155 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. H.-K. Lin, C.-B. Wang, H.-C. Chiu, S.-H. Chien, Catal. Lett. 86, 63–68 (2003)

    Article  CAS  Google Scholar 

  37. B. Minčeva-Šukarova, B. Mangovska, G. Bogoeva-Gaceva, V.M. Petruševski, Croat. Chem. Acta. 85, 63–70 (2012)

    Article  CAS  Google Scholar 

  38. J. Zhao, J. Zhang, T. Zhou, X. Liu, Q. Yuan, A. Zhang, RSC Adv. 6, 4397–4409 (2016)

    Article  CAS  Google Scholar 

  39. A. Barth, Prog. Biophys. Mol. Biol. 74, 141–173 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. X. Colom, F. Carrillo, F. Nogués, P. Garriga, Polym. Degrad. Stab. 80, 543–549 (2003)

    Article  CAS  Google Scholar 

  41. I.A. Mudunkotuwa, V.H. Grassian, Langmuir 30, 8751–8760 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. M. Wolpert, P. Hellwig, Spectrochim. Acta A Mol. Biomol. Spectrosc. 64, 987–1001 (2006)

    Article  PubMed  CAS  Google Scholar 

  43. H. Kakida, K. Tashiro, Polym. J. 29, 353–357 (1997)

    Article  CAS  Google Scholar 

  44. Y. Liu, Stabilization and Carbonization Studies of Polyacrylonitrile/Carbon Nanotube Composite Fibers (Ph.D. Dissertation, School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, 2010)

  45. M.A. Phadke, D.A. Musale, S.S. Kulkarni, S.K. Karode, J. Polym. Sci. Part B Polym. Phys. 43, 2061–2073 (2005)

    Article  CAS  Google Scholar 

  46. Y. Zhu, M.A. Wilding, S.K. Mukhopadhyay, J. Mater. Sci. 31, 3831–3837 (1996)

    Article  CAS  Google Scholar 

  47. B.A. Newcomb, L.A. Giannuzzi, K.M. Lyons, P.V. Gulgunje, K. Gupta, Y. Liu, M. Kamath, K. McDonald, J. Moon, B. Feng, Carbon 93, 502–514 (2015)

    Article  CAS  Google Scholar 

  48. K. Zhao, Z.-Y. Liu, B.-L. Xiao, D.-R. Ni, Z.-Y. Ma, Acta Metall. Sin. (Engl. Lett.) 31, 134–142 (2018)

    Article  CAS  Google Scholar 

  49. B.J. Mapleback, T.J. Simons, Y. Shekibi, K. Ghorbani, A.N. Rider, Electrochim. Acta 331, 135233 (2020)

    Article  CAS  Google Scholar 

  50. H. Wang, X. Li, F. Meng, G. Wang, D. Zhang, Chem. Eng. J. 392, 123798 (2020)

    Article  CAS  Google Scholar 

  51. T. Lehnert, M.K. Kinyanjui, A. Ladenburger, D. Rommel, K. Wörle, F. Börrnert, K. Leopold, U. Kaiser, ACS Nano 11, 7967–7973 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. D.G. Henry, I. Jarvis, G. Gillmore, M. Stephenson, Earth Sci. Rev. 198, 102936 (2019)

    Article  CAS  Google Scholar 

  53. M. Pawlyta, J.-N. Rouzaud, S. Duber, Carbon 84, 479–490 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry & Energy (MOTIE) [No. 20012341].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Beom Yoo or Young-Jun Kim.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1066 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Li, S., Yoo, JB. et al. Effects of Various Transition Metals on the Thermal Oxidative Stabilization of Polyacrylonitrile Nanofibers. J Inorg Organomet Polym 31, 3368–3377 (2021). https://doi.org/10.1007/s10904-021-01954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01954-x

Keywords

Navigation