Skip to main content
Log in

Effects of Synthesis Parameters on Organic Template-Free Preparation of Zeolite Y

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, the effects of reaction conditions on the conventional hydrothermal synthesis and crystal growth kinetics of zeolites Y in aqueous sodium alkaline solutions without the use of organic templates were studied. For this purpose, a series of Y-type zeolites were synthesized at different reaction conditions such as various aging temperatures, crystallization temperatures, Na2O contents of the initial gel and crystallization times using hydrothermal process. The prepared samples were well characterized by the X-ray diffraction (XRD) and N2 adsorption–desorption techniques. The results prove that the Na2O contents of the initial gel and synthesis temperature increase the rate of the Y and P zeolite crystallization. The effect of Na2O and temperature on the synthesis of two different zeolite types (Y and P) with a constant initial synthetic composition under the organic template-free synthesis of zeolite Y was studied. In inappropriate conditions, the P-type zeolite was the major impurity obtained along with the Y-type zeolite. Also from the experimental results, the kinetic parameters for both zeolite Y and zeolite P were calculated. The kinetic study show that the activation energy for crystallization of both zeolites was enhanced by increasing the Na2O content of the initial gel due to the structure-directing role of Na+ cation in the induction period and crystal growth step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Montalvo, C. Huiliñir, R. Borja, E. Sánchez, C. Herrmann, Bioresour. Technol. 301, 122808 (2020)

    CAS  PubMed  Google Scholar 

  2. M. Ostraat, Hierarchical Zeolites: Synthesis and Applications, APS March Meeting (Bostone, United States, 2019).

    Google Scholar 

  3. J. Čejka, R. Millini, M. Opanasenko, D.P. Serrano, W.J. Roth, Catal. Today 345, 2 (2020)

    Google Scholar 

  4. M. Behrooz, M.H. Peyrovi, A. Nakhaei-Pour, React. Kinet. Catal. Lett. 73, 127 (2001)

    CAS  Google Scholar 

  5. A. Nakhaei Pour, Y. Zamani, A. Tavasoli, S.M.K. Shahri, S.A. Taheri, Fuel 87, 2004 (2008)

    Google Scholar 

  6. A. Nakhaei Pour, M. Zare, S.M.K. Shahri, Y. Zamani, M.R. Alaei, J. Nat. Gas Sci. Eng. 1, 183 (2009)

    Google Scholar 

  7. N. Davoodian, A. Nakhaei Pour, M. Izadyar, A. Mohammadi, M. Vahidi, J. Iran. Chem. Soc. (2020). https://doi.org/10.1007/s13738-020-02091-x

    Article  Google Scholar 

  8. N. Davoodian, A. Nakhaei Pour, M. Izadyar, A. Mohammadi, A. Salimi, S.M. Kamali Shahri, Appl. Organomet. Chem. 34, e5747 (2020)

    CAS  Google Scholar 

  9. S.I. Jami, A. Nakhaei Pour, A. Mohammadi, S.M. Kamali Shahri, Chem. Eng. Technol. 43, 2100 (2020)

    CAS  Google Scholar 

  10. S. Salehi, M. Anbia, J. Inorg. Organomet. Polym. Mater. 27, 1281 (2017)

    CAS  Google Scholar 

  11. Z. Ghebache, Z. Safidine, F. Hamidouche, N. Boudieb, A. Benaboura, M. Trari, J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01801-5

    Article  Google Scholar 

  12. H. Shayegan, G.A.M. Ali, V. Safarifard, J. Inorg. Organomet. Polym. Mater. 30, 3170 (2020)

    CAS  Google Scholar 

  13. F. Ke, F. Guo, J. Yu, Y. Yang, Y. He, L. Chang, X. Wan, J. Inorg. Organomet. Polym. Mater. 27, 843 (2017)

    CAS  Google Scholar 

  14. M. Aghajanzadeh, M. Zamani, H. Molavi, H. Khieri Manjili, H. Danafar, A. Shojaei, J. Inorg. Organomet. Polym. Mater. 28, 177 (2018)

    CAS  Google Scholar 

  15. J. García-Martínez, K. Li, G. Krishnaiah, ChemComm. 48, 11841 (2012)

    Google Scholar 

  16. X. Ren, S. Liu, R. Qu, L. Xiao, P. Hu, H. Song, W. Wu, C. Zheng, X. Wu, X. Gao, Micropor. Mesopor. Mater. 295, 109940 (2020)

    CAS  Google Scholar 

  17. M. Xie, Y. Li, U.J. Etim, H. Lou, W. Xing, P. Wu, X. Liu, P. Bai, Z. Yan, Ind. Eng. Chem. Res. 58, 5455 (2019)

    CAS  Google Scholar 

  18. W.Q. Jiao, W.H. Fu, X.M. Liang, Y.M. Wang, M.Y. He, RSC Adv. 4, 58596 (2014)

    CAS  Google Scholar 

  19. A. Mekki, A. Benmaati, A. Mokhtar, M. Hachemaoui, F. Zaoui, H.H. Zahmani, M. Sassi, S. Hacini, B. Boukoussa, J. Inorg. Organomet. Polym. Mater. 30, 2323 (2020)

    CAS  Google Scholar 

  20. F. Hamidouche, Z. Ghebache, N. Boudieb, M.M. Sanad, N.E. Djelali, J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01707-2

    Article  Google Scholar 

  21. C. Pagis, A.R. Morgado Prates, D. Farrusseng, N. Bats, A. Tuel, Chem. Mater. 28, 5205 (2016)

    CAS  Google Scholar 

  22. B. Sun, Y. Kang, Q. Shi, M. Arowo, Y. Luo, G. Chu, H. Zou, Can. J. Chem. Eng. 97, 3063 (2019)

    CAS  Google Scholar 

  23. M. Moosavifar, S.M. Heidari, L. Fathyunes, M. Ranjbar, Y. Wang, H. Arandiyan, J. Inorg. Organomet. Polym. Mater. 30, 1621 (2020)

    CAS  Google Scholar 

  24. Z. Ghebache, F. Hamidouche, Z. Safidine, M. Trari, B. Bellal, J. Inorg. Organomet. Polym. Mater. 29, 1548 (2019)

    CAS  Google Scholar 

  25. J.Q. Wang, Y.X. Huang, Y. Pan, J.X. Mi, Micropor. Mesopor. Mater. 199, 50 (2014)

    CAS  Google Scholar 

  26. E. Johnson, S.E. Arshad, Appl. Clay Sci. 97, 215 (2014)

    Google Scholar 

  27. E.J. Feijen, J.A. Martens, P.A. Jacobs, in Studies in Surface Science and Catalysis, ed. By J. Weitkamp, H.G. Karge, H. Pfeifer, W. Hölderich (Elsevier, Amsterdam, 1994) p. 3

  28. H.J. Köroğlu, A. Sarıoğlan, M. Tatlıer, A. Erdem-Şenatalar, Ö.T. Savaşçı, J. Cryst. Growth 241, 481 (2002)

    Google Scholar 

  29. S. Chen, D. Guan, Y. Zhang, Z. Wang, N. Jiang, Micropor. Mesopor. Mater. 285, 170 (2019)

    CAS  Google Scholar 

  30. T. Zhao, Y. Wang, C. Sun, A. Zhao, C. Wang, X. Zhang, J. Zhao, Z. Wang, J. Lu, S. Wu, W. Liu, Micropor. Mesopor. Mater. 292, 109731 (2020)

    Google Scholar 

  31. S. Sang, Z. Liu, P. Tian, Z. Liu, L. Qu, Y. Zhang, Mater. Lett. 60, 1131 (2006)

    CAS  Google Scholar 

  32. Y. Huang, K. Wang, D. Dong, D. Li, M.R. Hill, A.J. Hill, H. Wang, Micropor. Mesopor. Mater. 127, 167 (2010)

    CAS  Google Scholar 

  33. Z. Huo, X. Xu, Z. Lü, J. Song, M. He, Z. Li, Q. Wang, L. Yan, Micropor. Mesopor. Mater. 158, 137 (2012)

    CAS  Google Scholar 

  34. N. Hosseinpour, Y. Mortazavi, A. Bazyari, A.A. Khodadadi, Fuel Process. Technol. 90, 171 (2009)

    CAS  Google Scholar 

  35. S. Alerasool, P.K. Doolin, J.F. Hoffman, Ind. Eng. Chem. Res. 34, 434 (1995)

    CAS  Google Scholar 

  36. T. Tang, L. Zhang, H. Dong, Z. Fang, W. Fu, Q. Yu, T. Tang, RSC Adv. 7, 7711 (2017)

    CAS  Google Scholar 

  37. Y. Zhao, B. Zhang, Y. Zhang, J. Wang, J. Liu, R. Chen, Sep. Sci. Technol. 45, 1066 (2010)

    CAS  Google Scholar 

  38. S. Bohra, D. Kundu, M.K. Naskar, Ceram. Int. 40, 1229 (2014)

    CAS  Google Scholar 

  39. M. Abrishamkar, J. Spectrosc. 2013, 428216 (2013)

    Google Scholar 

  40. S. Yang, A.G. Vlessidis, N.P. Evmiridis, Ind. Eng. Chem. Res. 36, 1622 (1997)

    CAS  Google Scholar 

  41. W. Lutz, Adv. Mater. Sci. Eng. 2014, 724248 (2014)

    Google Scholar 

  42. Q. Li, Y. Zhang, Z. Cao, W. Gao, L. Cui, Pet. Sci. 7, 403 (2010)

    Google Scholar 

  43. T. Li, J. Ihli, J.T. Wennmacher, F. Krumeich, J.A. van Bokhoven, Chem. Eur. J. 25, 7689 (2019)

    CAS  PubMed  Google Scholar 

  44. T. Li, F. Krumeich, J.A. Van Bokhoven, Cryst. Growth Des. 19, 2548 (2019)

    CAS  Google Scholar 

  45. A. Xing, N. Zhang, D. Yuan, H. Liu, Y. Sang, P. Miao, Q. Sun, M. Luo, Ind. Eng. Chem. Res. 58, 12506 (2019)

    CAS  Google Scholar 

  46. M.H. Nada, S.C. Larsen, E.G. Gillan, Solid State Sci. 94, 15 (2019)

    CAS  Google Scholar 

  47. M. Ali, B. Brisdon, W. Thomas, Appl. Catal. A Gen. 252, 149 (2003)

    CAS  Google Scholar 

  48. S. Mintova, V. Valtchev, E. Vultcheva, S. Veleva, Zeolites 12, 210 (1992)

    CAS  Google Scholar 

  49. S.D. Kim, S.H. Noh, K.H. Seong, W.J. Kim, Micropor. Mesopor. Mater. 72, 185 (2004)

    CAS  Google Scholar 

  50. S. Mintova, V. Valtchev, Zeolites 13, 299 (1993)

    CAS  Google Scholar 

  51. S. Mintova, V. Valtchev, I. Kanev, Zeolites 13, 102 (1993)

    CAS  Google Scholar 

  52. H. Awala, J.P. Gilson, R. Retoux, P. Boullay, J.M. Goupil, V. Valtchev, S. Mintova, Nat. Mater. 14, 447 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this work appreciate the Ferdowsi University of Mashhad, Mashhad, Iran for their help in XRD analysis.

Funding

Funding for this work has been received from the Ferdowsi University of Mashhad, Research Council, Mashhad, Iran (Grant No. 2/48197–1397/8/22).

Author information

Authors and Affiliations

Authors

Contributions

AM performed the experiments. ANP has written the manuscript and checked the manuscript English level and quality of the experiment and the results. They also analyzed the characterization results.

Corresponding author

Correspondence to Ali Nakhaei Pour.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei Pour, A., Mohammadi, A. Effects of Synthesis Parameters on Organic Template-Free Preparation of Zeolite Y. J Inorg Organomet Polym 31, 2501–2510 (2021). https://doi.org/10.1007/s10904-021-01926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01926-1

Keywords

Navigation