Skip to main content
Log in

Comparative Study on Antibacterial Activity of MgO Nanoparticles Synthesized from Lawsonia inermis Leaves Extract and Chemical Methods

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this report, Lawsonia inermis leaves extract is employed for the first time to synthesize Magnesium Oxide (MgO) nanoparticles (NPs) in a green approach. The green synthesis of MgO NPs with Lawsonia inermis leaves extract has extra benefits like eco-friendly, cost-effective, rapid synthesis, safer, and give natural stabilization and capping action. MgO NPs were also prepared by the chemical method for the comparative study of properties. Sodium hydroxide was used as a reducing agent, and magnesium acetate as a precursor in the chemical method whereas in green synthesis leaves extract of Lawsonia inermis used. The prepared MgO NPs were characterized using different techniques for their average crystalline size, particle size, morphology, elemental analysis, microstructure and functional groups of the materials. The average crystalline size of 20 nm and 24 nm were observed for green and chemically synthesized MgO NPs. The antibacterial activity of green and chemically synthesized MgO NPs using different concentrations of (20–80 μL) against B. subtilis, S. aureus gram-positive and E. coli, P. vulgaris gram-negative bacteria were performed. A large inhibition zone is observed for green synthesized MgO NPs over chemical synthesized MgO NPs confirmed the higher activity for green synthesized MgO NPs. The bio-synthesized MgO NPs showed good antibacterial activity and exhibited maximum inhibition zone at 80 μL concentration. This study presents a rapid, low cost, environmentally friendly green approach for MgO NPs synthesis and obtained MgO NPs can also be used against other microbial species in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Mohamed, E.I. Shafey, Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process. Synth. 9, 304–339 (2020)

    Google Scholar 

  2. S.G. Ali, M.A. Ansari, M.A. Alzohairy, M.N. Alomary, M. Jalal, S. AlYahya, S.M. Asiri, H.M. Khan, Effect of biosynthesized ZnO nanoparticles on multi-drug resistant Pseudomonasaeruginosa. Antibiotics 9, 260–268 (2020)

    CAS  PubMed Central  Google Scholar 

  3. H. Barabadi, H. Tajani, M. Moradi, M.D. Kamali, R. Meena, S. Honary, M.A. Mahjoub, M. Saravanan, Penicillium family as emerging nanofactory for biosynthesis of green nanomaterials: a journey into the world of microorganisms. J. Clust. Sci. 30, 843–856 (2019)

    CAS  Google Scholar 

  4. R.G. Saratale, I. Karuppusamy, G.D. Saratale, A. Pugazhendhi, G. Kumar, Y. Park, S.G. Ghodake, R.N. Bhargava, J.R. Banu, H.S. Shin, A comprehensive review on green nanomaterials using biological systems recent perception and their future applications. Coll. Surf. B. 170, 20–35 (2018)

    CAS  Google Scholar 

  5. L. Uamaralikhan, M.J.M. Jaffar, Green synthesis of MgO nanoparticles and it antibacterial activity. Iran. J. Sci. Technol. Trans. A Sci. 42, 477–485 (2017)

    Google Scholar 

  6. A. Khatua, E. Priyadarshinii, P. Rajamani, A. Patel, J. Kumar, A. Naik, M. Saravanan, H. Barabadi, A.G. Prasad, B. Paul, R. Meen, Phytosynthesis, characterization and fungicidal potential of emerginggold nanoparticles using pongamia pinnata leave extract: a novel approach in nanoparticle synthesis. J. Cluster Sci. 31, 125–213 (2020)

    CAS  Google Scholar 

  7. H. Thi, D. Yen, Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. J. Chem. 9, 1–10 (2019)

    Google Scholar 

  8. J. Suresh, R.G. Raivgandhi, S. Selvam, M. Sundraraja, Synthesis of magnesium oxide nanoparticles by wet chemical method and its antibacterial activity. Adv. Mater. Res. 678(297), 300 (2013)

    Google Scholar 

  9. P. Bhattacharya, S. Swain, G. Lopamudra, N. Sudarsan, Fabrication of magnesium oxide nanoparticles by solvent alteration and their bactericidal applications. J. Mater. Chem. B. 7, 4141–4148 (2019)

    CAS  Google Scholar 

  10. L.I. Songnan, Combustion synthesis of porous MgO and its adsorption properties. Int. J. Ind. Chem. 9, 1089–1096 (2019)

    Google Scholar 

  11. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Evaluating the antibacterial activity of MgO nanoparticles synthesized from aqueous leaf extract. Nanopart. Med. 5, 1–18 (2019)

    Google Scholar 

  12. R. Prasanth, S.D. Kumar, A. Jayalakshmi, G. Singaravelu, K. Govindaraju, V.G. Kumar, Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Indian J Geo-Marine Sci. 48, 1210–1215 (2019)

    Google Scholar 

  13. J. Jeevanandam, S.C. Yen, M.K. Danquah, Evaluating the antibacterial activity of MgO nanoparticles synthesized from aqueous leaf extract. Med One. 4, 1–15 (2019)

    Google Scholar 

  14. K. Kalimuthu, B.S. Cha, S. Kim, K.S. Park, Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review. Microchem. J. 152, 104296–1042105 (2020)

    CAS  Google Scholar 

  15. P. Clarance, B. Luvankar, J. Sales, A. Khusro, P. Agastian, J.K. Tack, M. Manal, Al.H. KhulaifiAL-Shwaima, A.M. Elgorban, A. Syed, Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J. Biol. Sci. 27, 706–712 (2020)

    CAS  PubMed  Google Scholar 

  16. M. Vergheese, S.K. Vishal, Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J. Pharmacogn. Phytochem. 7, 1193–1200 (2018)

    CAS  Google Scholar 

  17. G. Geeta, A.R. Choudhury, A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 9, 12944–12968 (2019)

    Google Scholar 

  18. C. Mohanasrinivasan, C.S. Devi, M. Avani, P. Suman, A. Aditi, E. Selvarajan, S.J. Naine, Biosynthesis of MgO nanoparticles using Lactobacillus sp. and its activity against human leukemia cell lines HL-60. BioNanoScience 8, 1–6 (2017)

    Google Scholar 

  19. M.L. Khan, M.N. Akhtar, N. Ashraf, J. Najeeb, H. Munir, T.I. Awan, M.B. Tahir, M.R. Kabli, Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl. Nanosci. 10, 2351–2364 (2019)

    Google Scholar 

  20. V. Mary, S.K. Vishal, Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J. Pharmacogn. Phytochem. 7, 1193–1200 (2018)

    Google Scholar 

  21. M. Shikha, S. Aakash, K. Vipin, Synthesis and characterization of MgO nanoparticles by orange fruit waste through green method. Int. J. Adv. Res. Chem. Sci. 4, 36–42 (2017)

    Google Scholar 

  22. J. Suresh, R. Yuvakkumar, M. Sundrarajan, S.I. Hong, Green synthesis of magnesium oxide nanoparticles. Adv. Mater. Res. 952, 141–144 (2014)

    Google Scholar 

  23. D. Renata, Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalyticproperties. Iran J. Sci. Technol. Trans. Sci. 42, 547–555 (2018)

    Google Scholar 

  24. K. Kanagamani, P. Muthukrishnan, K. Shankar, A. Kathiresan, H. Barabadi, M. Saravanan, Antimicrobial, cytotoxicity and photocatalytic degradation of norfloxacin using Kleinia grandiflora mediated silver nanoparticles. J. Clust. Sci. 30, 1415–1424 (2019)

    CAS  Google Scholar 

  25. J.K.K. Al-rubiay, N.N. Jaber, L.K. Alrubaiy, Antimicrobial efficacy of henna extracts. Oman Med. J. 23, 253–256 (2008)

    PubMed  PubMed Central  Google Scholar 

  26. J. Kasthuri, S. Veerapandian, N. Rajendiran, Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Coll. Surf. B 68, 55–60 (2009)

    CAS  Google Scholar 

  27. L.T. Dama, Green synthesis of silver nanoparticles using leaf extract of Lawsonia inermis and Psidium guajava and evaluation of their antibacterial activity. Sci. Res. Rep. 6, 89–95 (2016)

    Google Scholar 

  28. S. Chauhan, D.N. Kumar, L.S.B. Upadhyay, Facile synthesis of iron oxide nanoparticles using Lawsonia inermis extract and its application in decolorization of dye. BioNanoScience 9, 789–798 (2019)

    Google Scholar 

  29. J. Vijaya, Investigation on preferably oriented abnormal growth of CdSe nanorods along (0002) plane synthesized by henna leaf extract- mediated green synthesis. R. Soc. Open Sci. 5, 1–9 (2018)

    Google Scholar 

  30. H. Upadhyaya, S. Shome, R. Sarma, S. Tewari, M.K. Bhattacharya, S.K. Panda, Green synthesis, characterization and antibacterial activity of ZnO nanoparticles. Am. J. Plant Sci. 9, 1279–1291 (2018)

    CAS  Google Scholar 

  31. K. Shanker, N. Jayarambabu, G.K. Mohan, S.M.N.R. Basria, M. Ramamohan, V. Gupta, A Novel Pharmacological approach of herbal mediated cerium oxide and silver nanoparticles with improved biomedical activity in comparison with Lawsonia inermis. Coll. Surf. B. 174, 199–206 (2018)

    Google Scholar 

  32. K. Jhansi, N. Jayarambabu, K.P. Reddy, N.M. Reddy, Biosynthesis of MgO nanoparticles using mushroom extract : effect on peanut (Arachis hypogaea L.) seed germination. 3 Biotech 7, 1–11 (2017)

    Google Scholar 

  33. N. Jayarambabu, K.V. Rao, V. Rajendar, Biogenic synthesis, characterization, acute oral toxicity studies of synthesized Ag and ZnO nanoparticles using aqueous extract of Lawsonia inermis. Mater. Lett. 211, 43–47 (2018)

    CAS  Google Scholar 

  34. A.G. El-Shamy, Synthesis of new magnesium peroxide (MgO2) nano-rods for pollutant dye removal and antibacterial applications. Mater. Chem. Phys. 243, 122640–122649 (2020)

    CAS  Google Scholar 

  35. J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S. Hong, Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus D. Don) leave extract and its antimicrobial as well as anticancer activity. Adv. Powder Technol. 29, 1685–1694 (2018)

    CAS  Google Scholar 

  36. S. Ogunyemi, F. Zhang, Y. Abdallah, Y. Zhang, Y. Wang, G. Sun, W. Qiu, Biosynthesis and characterization of magnesiumoxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2, Artificial Cells. Nanomed. Biotechnol. 47(2230), 2239 (2019)

    Google Scholar 

  37. E.R. Essien, V.N. Atasie, O.A. Okeafor, D.O. Nwude, Biogenic synthesis of magnesim oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int. Nano Lett. 10, 43–48 (2020)

    CAS  Google Scholar 

  38. L. Cai, J. Chen, Z. Liu, H. Wang, H. Yang, W. Ding, Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 9, 790–809 (2018)

    PubMed  PubMed Central  Google Scholar 

  39. E.R. Essien, V.N. Atasie, O.T.O.A. Okeafor, T.O. Oyebanji, D.O. Nwude, Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chem. Pap. 74, 2101–2109 (2020)

    CAS  Google Scholar 

  40. S. Priyadarshini, M. Azizah, S. Faridah, Y. Rosiyah, A. Abdullah, A.A. Alyousef, A. Mohammed, Biosynthesis of TiO2 nanoparticles and their superior antibacterial efect against human nosocomial bacterial pathogens. Res. Chem. Intermed. 46, 1077–1089 (2020)

    CAS  Google Scholar 

  41. G. Karli, S. Buford, K. Mark, K.G. Akhilesh, Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Ther. 9, 1700033–1700048 (2018)

    Google Scholar 

  42. M.R. Bindhu, M. Umadevi, M.K. Micheal, M.V. Arasu, A. Al-Dhabi, Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater. Lett. 166, 19–22 (2016)

    CAS  Google Scholar 

  43. M.S.R. Rajoka, Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Coll. Surf. B. 186, 110734–110746 (2020)

    Google Scholar 

  44. P. Raju, P.M. Kavitha, S. Rajasree, N. Suganthy, Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of sargassum wightii. J. Photochem. Photobiol. B 190, 86–97 (2019)

    Google Scholar 

  45. P. Bhuyar, M.H. Rahim, S. Sundararaju, P.R.G. Maniam, N. Govindan, Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. J. Basic Appl. Sci. 9, 1–15 (2020)

    Google Scholar 

  46. N.-Y. Nguyen, N. Grelling, C.L. Wetteland, R. Rosario, H. Liu, Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nmgo) against pathogenic bacteria, yeasts, and biofilms. Sci. Rep. 16260, 1–24 (2018)

    Google Scholar 

  47. N. Pauzi, N.M. Zain, R.V. Kutty, H. Ramli, Antibacterial and antibiofilm properties of ZnO nanoparticles synthesis using gum arabic as a potential new generation antibacterial agent. Mater. Today (2020). https://doi.org/10.1016/j.matpr.2020.06.359

    Article  Google Scholar 

  48. F. Ding, Z. Nie, H. Deng, L. Xiao, Y. Du, X. Shi, Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydr. Polym. 98, 1547–1552 (2013)

    CAS  PubMed  Google Scholar 

  49. R. Song, J. Yan, Xu. Shasha, Y. Wang, T. Ye, J. Chang, H. Deng, Bin Li Silver ions/ovalbumin films layer-by-layer self-assembled polyacrylonitrile nanofibrous mats and their antibacterial activity. Coll. Surf. B. 6, 322–328 (2013)

    Google Scholar 

  50. B. Janani, A. Syed, L. Raju, F.H. Al-Harthi, A.M. Thomas, A. Das, S.S. Khan, Synthesis of carbon stabilized zinc oxide nanoparticles and evaluation of its photocatalytic antibacterial and anti-bioflm activities. J. Inorg. Organomet. Polym. Mater. 30, 2279–2288 (2020)

    CAS  Google Scholar 

  51. P. Suvaitha, S. Selvam, G. Shree Chinnadurai, D. Ganesan, P. Perumal, V. Kandan, Cadmium oxide-zinc oxide nanocomposites synthesized using waste eggshell membrane and its in-vitro assessments of the antimicrobial activities and minimum inhibitory concentration. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01688-2

    Article  Google Scholar 

  52. F. Zahiri Oghanil, K. Tahvildaril, M. Nozari, Novel antibacterial food packaging based on chitosan loaded ZnO nano particles prepared by green synthesis from nettle leaf extract. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01621-7

    Article  Google Scholar 

  53. S. Pavithra, B. Mohana, M. Mani, P.E. Saranya, R. Jayavel, D. Prabu, S. Kumaresan, Bioengineered 2D ultrathin sharp-edged MgO nanosheets using Achyranthes aspera Leaf extract for antimicrobial applications. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01772-7

    Article  Google Scholar 

Download references

Funding

This study is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatappa Rao Tumu.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshaykranth, A., Jayarambabu, N., Tumu, V.R. et al. Comparative Study on Antibacterial Activity of MgO Nanoparticles Synthesized from Lawsonia inermis Leaves Extract and Chemical Methods. J Inorg Organomet Polym 31, 2393–2400 (2021). https://doi.org/10.1007/s10904-021-01915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01915-4

Keywords

Navigation